
FACHHOCHSCHULE
STUTTGART

HO CH SCHULE FÜ R
TECHN IK

UNIVERSITY O F A PPLIED SC IENCES

Department of Mathematics and

Computer Science

Winter Term 2001/2002

Implementation of a JPEG Decoder for a 16-bit
Microcontroller

by

Stefan Kuhr

A Thesis Submitted

in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

in

Software Technology

Thesis Committee:

Prof. Dr. Uwe Müßigmann, Chair
Prof. Dr. Peter Hauber
Rolf Kofink, Sony Corp.

For the best
of all mothers.

Contents

Contents I

Acknowledgements IV

Notational Conventions V

List of Acronyms VI

List of Figures X

List of Tables XII

1 Introduction 1
1.1 Subject and conceptual formulation of this thesis 1
1.2 Overview of the subsequent chapters . 3

2 A brief introduction to JPEG encoding and decoding 4
2.1 History and Motivation . 4
2.2 The JPEG Standard . 5

2.2.1 Compression classes . 6
2.2.2 DCT-based Encoding . 6
2.2.3 Modes of operation . 9
2.2.4 The baseline process . 10

2.3 The JPEG File Interchange Format (JFIF) 10
2.4 Compression and information loss in JPEG encoding 12

3 The Discrete Cosine Transform 17
3.1 Mathematical Definition of the DCT . 17

3.1.1 The one-dimensional DCT . 17
3.1.2 The two-dimensional DCT . 19

3.2 Relations between the DCT and the DFT 20
3.2.1 Computing an N-point DCT from a 2N-point DFT 21
3.2.2 A Divide-and-Conquer Scheme for real input vectors 21
3.2.3 DCT and DFT for real and symmetrical input vectors 24

3.3 Fast one-dimensional 8-point DCTs . 25
3.3.1 A simple and fast 8-point DCT . 26
3.3.2 The Ligtenberg-Vetterli-DCT . 28

I

CONTENTS

3.3.2.1 An algebraic approach to the Ligtenberg-Vetterli-DCT . . 28
3.3.2.2 A graphical approach to the Ligtenberg-Vetterli-DCT . . . 32

3.3.3 The Loeffler-Ligtenberg-Moschytz-DCT 38
3.3.4 The Inverse Loeffler-Ligtenberg-Moschytz-DCT 40
3.3.5 The Winograd 16-point “small-N” DFT 42
3.3.6 The Arai-Agui-Nakajima-DCT . 49
3.3.7 The Inverse Arai-Agui-Nakajima-DCT 61

3.4 Fast two-dimensional DCTs . 63
3.4.1 The tensor product and its properties 63
3.4.2 The two-dimensional DCT as a tensor product 64
3.4.3 Feig’s fast two-dimensional DCT . 66
3.4.4 Feig’s fast two-dimensional inverse DCT 80

4 Fast Image Scaling in the Context of JPEG Decoding 93
4.1 Image Scaling in the Spatial Domain . 93
4.2 Image Scaling in the IDCT Process . 97

4.2.1 Image scaling in the IDCT process to half of the original size 97
4.2.2 Image scaling in the IDCT process to a fourth of the original size . . 99
4.2.3 Image scaling in the IDCT process to an eighth of the original size . 99

5 The JPEGLib 101
5.1 Goals, Motivation and History . 102
5.2 Capabilities of the JPEGLib . 103
5.3 The JPEGLib package content . 104
5.4 Adapting the JPEGLib to different platforms and compilers 105

5.4.1 Determining the correct jconfig.h file and the correct makefile 105
5.4.2 Choosing the right memory manager 106

5.5 Usage and Architectural Issues . 107
5.5.1 Typical code sequences for encoding 108
5.5.2 Typical code sequences for decoding 109
5.5.3 The encoder and decoder objects . 110

5.6 Summary . 111

6 JPEG Decoding on the Micronas SDA 6000 Controller 114
6.1 Project descriptions . 114
6.2 Changes to the JPEGLib . 115
6.3 Changes for faster downscaling to a fourth 121
6.4 Important compiler optimization settings 127
6.5 The custom data source manager for M2 . 127
6.6 Other implementations of custom functionality 128

6.6.1 “Hooking” into Huffman decoding 129
6.6.2 Using XRAM for the range-limit table 130
6.6.3 Modifying the color conversion and upsampling subobjects 130
6.6.4 Modifying the dithering subobjects 131

6.7 Customizing the behaviour of the Software 132
6.8 Results . 133

6.8.1 Memory limitations and high-resolution JPEG files 133

II

CONTENTS

6.8.2 4-4-4 mode versus 5-6-5 mode . 134
6.8.3 JPEG Performance . 134
6.8.4 Image scaling Performance . 138
6.8.5 Debugging versus “Free-Run” Performance 138

7 Summary and Future Outlook 140

Index 143

Bibliography 145

Declaration 148

III

Acknowledgements

The author would like to thank Sony-Wega Corporation for the opportunity to work on this
interesting topic as a master thesis. Special thanks go to all the fine folks of the VEE team of
the Sony Advanced Technology Center Stuttgart, especially to the author’s supervisor, Rolf
Kofink, for all the fruitful discussions, to Andreas Beermann and Thor Opl for insightful
comments, to Matthias Jerye for his outstanding technical expertise and cooperativeness,
and to Mark Blaxall for reviewing this document over and over again, providing useful tips
from a native English speaker.

Special thanks go to Thomas G. Lane from the Independent JPEG Group for reviewing
chapter 5.

Finally, the author would like to thank all the helpful people in the German speaking
TEX usenet newsgroup de.comp.text.tex for helping troubleshoot all kinds of weirdnesses
involved with writing a document like this in LATEX.

IV

Notational Conventions

The following notational conventions will be used throughout this document:

Symbol Meaning

F (u) One-dimensional Fourier Transform
F (u, v) Two-dimensional Fourier Transform
F̃ (u) One-dimensional Cosine Transform
F̃ (u, v) Two-dimensional Cosine Transform
<{. . .} Real Part
={. . .} Imaginary Part
j

√
−1

In n× n Identity Matrix

V

List of Acronyms

2D-DCT Two-dimensional Discrete Cosine Transform. The 2D-DCT is the two-dimensio-
nal variant of the DCT, see section 3.1.2.

2D-FDCT Two-dimensional Forward Discrete Cosine Transform. The 2D-FDCT is the
two-dimensional variant of the FDCT, see section 3.1.2.

2D-IDCT Two-dimensional Inverse Discrete Cosine Transform. The 2D-IDCT is the two-
dimensional variant of the IDCT, see section 3.1.2.

AC Alternating Current. In electricity, Alternating Current occurs when charge carriers
in a conductor or semiconductor periodically reverse their direction of movement.

AC-3 Audio Code number 3. AC-3 is a multichannel music compression technology, also
known as Dolby Digital, that has been developed by Dolby Laboratories.

ANSI American National Standards Institute. The American National Standards Institute
is the primary organization for fostering the development of technology standards in
the United States of America. ANSI works with industry groups and is the United
States’ member of the ISO and the IEC.

ASCII American Standard Code for Information Interchange. ASCII is the most common
format for text files in computers and on the Internet. It was developed by the ANSI.

CCITT International Telegraph and Telephone Consultative Committee. The CCITT is
an organ of the ITU.

CMYK Cyan, Magenta, Yellow, Black. CMYK is a so-called color space and thus refers
to a system for representing colors. The CMYK color space is mainly used for printed
color illustrations.

COM Component Object Model. COM is a framework and an architecture for creation,
distribution and managing of distributed objects in a network, as specified by Mi-
crosoft.

cos-DFT Cosine DFT. The Cosine DFT is the definition of Vetterli and Nussbaumer for
the real part of a DFT, see section 3.2.2.

CORBA Common Object Request Broker Architecture. CORBA is an architecture and
specification for creation, distribution and managing of distributed objects in a net-
work, as defined by the OMG (Object Management Group).

VI

LIST OF ACRONYMS

DC Direct Current. DC (Direct Current) is the unidirectional flow or movement of electric
charge carriers.

DCT Discrete Cosine Transform. The Discrete Cosine Transform is an orthonormal trans-
form that is suitable for image compression, see chapter 3.

DCT* Scaled variant of the FDCT. The DCT* is a scaled variant of the FDCT, see section
3.2.2.

DFT Discrete Fourier Transform. The Discrete Fourier Transform is an orthonormal trans-
form that is widely used in system theory, see section 3.2.1.

DRAM Dynamic Random Access memory. Dynamic Random Access memory is the most
common kind of random access memory (RAM) for personal computers.

EPROM Erasable programmable read-only memory. EPROM is programmable read-only
memory that can be erased by exposing it to ultraviolet light in order to reprogram
it.

FDCT Forward Discrete Cosine Transform. See the complete definition of the Forward
Discrete Cosine Transform in 3.1.1.

GDI Graphics Device Interface. The GDI is a software library that was used throughout
this thesis in conjunction with the microcontroller in use for the rendering of bitmaps
on a monitor or TV set.

GIF Graphics Interchange Format. GIF is one of the most common file formats for graphic
images on the World Wide Web.

GNU GNU is not Unix. The recursive acronym GNU stands for a UNIX-like operating
system that comes with source code that can be copied, modified, and redistributed.
Often the term GNU is also associated with “The GNU project” of the Free Software
Foundation.

HDTV High Definition Television. HDTV is is a television format in 16:9 aspect ratio
with at least twice the horizontal and vertical resolution of the standard format.

IDCT Inverse Discrete Cosine Transform. The Inverse Discrete Cosine Transform is the
reverse process to the FDCT. See the complete definition of the Inverse Discrete Cosine
Transform in 3.1.1.

IEC International Electrotechnical Commission. The IEC is a nongovernmental standards
association that coordinates and unifies electrotechnical standards.

IJG Independent JPEG Group. An informal group that writes and distributes a widely
used free library for JPEG image compression.

IRAM Internal dual-port RAM. The IRAM is on-chip memory of the controller used
throughout this thesis.

ISO International Organization for Standardization. The ISO is a worldwide federation of
national standards bodies.“ISO” is actually not an abbreviation. It is a word, derived
from the Greek isos, meaning “equal”.

VII

LIST OF ACRONYMS

ITU International Telecommunication Union. The ITU is the United Nations’ Specialized
Agency in the field of telecommunications.

JFIF JPEG File Interchange Format. JFIF is the standard file format for exchanging
JPEG images, see section 2.3.

JPEG Joint Photographic Expert Group. JPEG is the standard for continuous tone still
images, see chapter 2.

MIPS Million instructions per second. The number of MIPS corresponds to the number
of operations a computer can execute within a given time and thus serves as a general
measure of computing performance.

MMX Multimedia Extensions. MMX is an extension to the instruction set of the Intel
Pentium processor family for improved performance of multimedia applications.

MPEG Moving Picture Experts Group. The Moving Picture Experts Group is a working
group in ISO that develops standards for digital video and audio compression.

OS Operating System. An Operating System is the program that is being initially loaded
into a computer by a boot procedure and that manages all the other programs in the
computer.

PAL Phase Alternation Line. PAL is an analog television display standard that is mainly
used in Europe but also in other parts of the world.

ROM Read-only Memory. Read-only Memory is memory that cannot be written to.

RGB Red, Green, Blue. RGB is a so-called color space and thus refers to a system for rep-
resenting colors. Pixels are represented as tupels of red, green and blue components.

sin-DFT Sine DFT. The Sine DFT is the definition of Vetterli and Nussbaumer for the
imaginary part of a DFT, see section 3.2.2.

SVGA Super Video Graphics Array. SVGA is a display mode for computer monitors as
specified by the Video Electronics Standards Assocation (VESA).

SMP Symmetrical Multiprocessing. In systems that employ Symmetrical Multiprocessing,
more than one processor is used and a single copy of the operating system is in charge
of all the processors. The operating system does not monopolize a single CPU, i.e.
both operating system code and application code can run on all available processors.

UNICODE The Unicode Worldwide Character Standard. UNICODE is a format for bi-
nary coding text files in computers. UNICODE encompasses all the diverse languages
of the modern world as well as many classical and historical languages.

UI User Interface. The User Interface is the part of a computer program that accepts input
from the user and produces output for the user.

Win32 32-bit Windows. 32-bit Windows is the operating system environment that the
Microsoft Windows operating systems provide to applications.

VIII

LIST OF ACRONYMS

XRAM Internal XBUS RAM. The XRAM is on-chip memory of the controller used
throughout this thesis.

YCCK Luminance, Chroma, Chroma, Black. YCCK is a so-called color space and thus
refers to a system for representing colors. The YCCK color space is a rarely used
color space defined by Adobe.

YCbCr Luminance and Chroma. YCbCr is a so-called color space and thus refers to a
system for representing colors. Pixels are represented as tupels of one luminance (Y)
and two chroma components (Cb and Cr). For a definition, see section 2.3.

IX

List of Figures

2.1 Simplified diagram of a DCT-based encoder 6
2.2 Differential encoding of the DC values of two subsequent 8× 8 blocks . . . 7
2.3 Zig-Zag encoding of AC coefficients within one 8× 8 block 7
2.4 Simplified diagram of a DCT-based decoder 8
2.5 Original picture at size 480000 bytes . 13
2.6 JPEG file at size 54680 bytes . 14
2.7 JPEG file at size 35336 bytes . 14
2.8 JPEG file at size 18573 bytes . 15
2.9 JPEG file at size 10807 bytes . 15

3.1 A graphical description of an 8 point real DFT 33
3.2 A graphical description of an 8 point DCT* 34
3.3 A combination of figures 3.1 and 3.2 to derive the DCT from the DCT* . . 35
3.4 Flowgraph for the Ligtenberg-Vetterli Fast DCT 36
3.5 Hardware implementation of the Ligtenberg-Vetterli Fast DCT 37
3.6 Flowgraph for the Loeffler-Ligtenberg-Moschytz Fast DCT 38
3.7 Inverse Loeffler-Ligtenberg-Moschytz Fast DCT 41
3.8 Flowgraph for the even coefficients of the Arai-Agui-Nakajima Fast DCT . 55
3.9 Flowgraph for the odd coefficients of the Arai-Agui-Nakajima Fast DCT . . 58
3.10 Flowgraph for the Arai-Agui-Nakajima Fast DCT 59
3.11 Flowgraph for the inverse Arai-Agui-Nakajima Fast DCT 62
3.12 Flowgraph for matrix AF . 68
3.13 Flowgraph for matrix MF . 69
3.14 Flowgraph for matrix BF . 69
3.15 Flowgraph for matrix AF ⊗AF . 71
3.16 Flowgraph for matrix BF ⊗BF . 73
3.17 Flowgraph for matrix M2 . 74
3.18 Flowgraph for matrix N1 . 75
3.19 Flowgraph for matrix N2 . 76
3.20 Flowgraph for matrix N3 = Ñ ⊗ Ñ . 76
3.21 Flowgraph for matrix M3 = Ñ ⊗MF . 77
3.22 Flowgraph of K ′

8 ⊗K ′
8 without the final permutation by (P ⊗ P) 79

3.23 Flowgraph for matrix AI . 82
3.24 Flowgraph for matrix BI . 82
3.25 Flowgraph for matrix MI . 83
3.26 Flowgraph for matrix BI ⊗BI . 85

X

LIST OF FIGURES

3.27 Flowgraph for matrix AI ⊗AI . 86
3.28 Flowgraph for matrix M̃2 . 88
3.29 Flowgraph for matrix Ñ1 . 89
3.30 Flowgraph for matrix Ñ2 . 89
3.31 Flowgraph for matrix Ñ3 = 4 · Ñ ⊗ Ñ . 90
3.32 Flowgraph for matrix M̃3 = 2Ñ ⊗MI . 91
3.33 Flowgraph of (K ′

8 ⊗K ′
8)
−1 without the initial permutation by (PI ⊗ PI) . . 92

4.1 Flowgraph for the IDCT resizing to half of the original size, based on the
Loeffler-Ligtenberg-Moschytz Fast DCT . 98

4.2 Flowgraph for the IDCT resizing to a fourth of the original size, based on
the Loeffler-Ligtenberg-Moschytz Fast DCT 99

6.1 Decoding times for a series of images with 2048×1536 pixels resolution (4:2:0
mode, downsampled to a fourth) . 135

6.2 Decoding times for a series of images with 2048×1536 pixels resolution (4:4:4
mode, downsampled to a fourth) . 136

6.3 Decoding times for a series of images with 800× 600 pixels resolution (4:2:2
mode, no downsampling) . 137

XI

List of Tables

3.1 Computational complexity of Feig’s 2D DCT 78

5.1 Revision History of the JPEGLib . 103
5.2 Memory manager implementations supplied by the JPEGLib 106

6.1 Deviations of the new implementation from the standard implementation . 126
6.2 Debugging versus “Free Run” Performance 139

XII

Chapter 1

Introduction

All programmers are optimists. Perhaps this modern sorcery especially attracts
those who believe in happy endings and fairy godmothers. Perhaps the hundred
of nitty frustrations drive away all but those who habitually focus on the end
goal. Perhaps it is merely that computers are young, programmers are younger,
and the young are always optimists.

– From the book “The mythical man-month”
by Frederick P. Brooks jr., 1975

The aim of this chapter is to provide the reader with the initial expectations prior to
the beginning of this thesis, as well as with information regarding the organization of

the rest of this document. For the hasty reader it is probably enough to read the following
section, section 1.1, and the summary in chapter 7, to get an impression of what this thesis
is all about. For all other readers, section 1.2 contains an overview of what the reader will
expect throughout the rest of this document.

1.1 Subject and conceptual formulation of this thesis

This thesis is considered a feasibility study, that should examine whether a typical 16-bit
microcontroller with a graphics accelerator unit (Micronas SDA 6000), as it is used for On-
Screen-Displays in High-End TV sets, is capable of decoding JPEG files of commonly used
file sizes and image resolutions. Of particular interest are those resolutions that are com-
mon for digital still cameras. In order to estimate the feasibility, which first of all includes
acceptable performance, a JPEG decoder has to be implemented on the microcontroller.

The following issues have been identified beforehand as potential obstacles for this goal:

• Limited memory resources of the controller: The controller can use a maximum of 8
MBytes of DRAM. While this seems to be enough for JPEG decoding at first glance,
it has to be considered that an embedded device such as a microcontroller doesn’t have
virtual memory like PCs or workstations due to the lack of a harddisk. Also, typical

1

CHAPTER 1. INTRODUCTION

JPEG images from digital still cameras at the time of writing are “3.3 Megapixel”
images with a resolution of 2048× 1536 pixels. One image of this size with 1 byte per
color component clearly exceeds the available memory space of 8 MBytes.

• Processor speed: The microcontroller runs at a clock rate of 33 MHz. Typical ma-
chine instructions need two clock cycles, so the controller can be roughly considered
a 16.5 MIPS machine. Typical desktop computers today have several hundred MIPS
of processing power and optimized architectures for floating point arithmetics or in-
struction sets that are more suitable for the fast calculation of the DCT (Discrete
Cosine Transform), like the MMX technology from Intel.

• Display functionality: With standard software packages, the microcontroller’s graphics
accelerator unit is only capable of rendering RGB tupels with a color depth of 4 bits per
color component on the output device (4-4-4 mode). Though the graphics accelerator
unit has a mode (5-6-5 mode)in which it can display RGB tupels with 5, 6 and 5 bits
for R, G and B, respectively, there is no software available that exploits this mode.

The following tasks are considered prerequisites for a successful implementation of a JPEG
decoder:

• Availability of suitable software: Part of the work is considered market research for
suitable software packages that could be ported to the microcontroller. The choice of
programming languages is limited to C or C++ (via a C++ frontend compiler).

• Familiarity with the development environment for the microcontroller: Mastering
the “tool chain” of C/C++ compiler, assembler, linker/locator and debugger is a
prerequisite for writing any software on any platform, but is especially true for the
development for an embedded system with a cross-compiler and a remote debugger,
where also the quality of the development tools is generally not as high as for the PC
and workstation market.

The following issues are considered additional development goals:

• It should be taken into account, that the TV set used to render a decoded JPEG file
typically has only a very limited spatial resolution. This limitation is imposed by the
capabilities of the microcontroller (800×600 pixels maximum). Therefore, the ability
to scale an image fast enough, either during decoding or after decoding, in order to
fit the screen, is a requirement.

• It should be possible to identify and fix possible performance bottlenecks in the soft-
ware being used for JPEG decoding. Therefore intimate knowledge of all the steps
involved in JPEG decoding, especially the IDCT (Inverse Discrete Cosine Transform),
is a requirement.

The minimum result of this thesis should be to make a statement, as to whether or not the
microcontroller is capable of doing JPEG decoding. If it is not, the reasons for this should be
given. If it is capable for doing so, the limitations for this should be determined. Also, the
performance should be determined and increased, and it should be at least possible to decode
images of standard VGA resolution (640 × 480 pixels). If performance is unacceptable, it
should be possible to predict the processing power that is required for the next generations
of microcontrollers to deliver acceptable performance.

2

1.2. OVERVIEW OF THE SUBSEQUENT CHAPTERS

1.2 Overview of the subsequent chapters

The next chapters are organized as follows: Chapter 2 will contain a brief introduction to
JPEG, including some historical retrospect and an overview of those parts of this interna-
tional standard that are actually in use at the time of writing. Chapter 3 will dive into the
heart of JPEG compression, the discrete cosine transform. Several historical algorithms will
be presented, including the fastest one-dimensional algorithms known up to now, and a fast
two-dimensional algorithm that is based on the fastest scaled one-dimensional algorithm.
Chapter 4 will deal with fast image scaling, either in the spatial domain, after decoding
a JPEG image, or during the decoding process. Chapter 5 will give an overview of the
most popular software package being used for JPEG encoding and decoding, the Indepen-
dent JPEG Group’s JPEGLib. Chapter 6 will include information about the source code
written during this thesis along with detailed numbers on the performance of the Micronas
SDA 6000 microcontroller for JPEG decoding. Chapter 7 will then finally conclude this
document with a summary and recommendations for future work.

3

Chapter 2

A brief introduction to JPEG
encoding and decoding

Not for nothing does it say in the Commandments “Thou shalt not make unto
thee any image” . . . Every image is a sin . . .When you love someone you leave
every possibility open to them, and in spite of all the memories of the past you
are ready to be surprised, again and again surprised, at how different they are,
how various, not a finished image.

– From the novel “Stiller” by Max Frisch, 1954

The aim of this chapter is to provide an overview of JPEG encoding and decoding without
going too far into the technical details themselves. The interested reader may consult

the various references for more in-depth details on the actual file format or other subtle
details of the standard. First we will give some historical overview and will make clear, that
the JPEG standard is not, at least in its initial design, a simple file format specification, but
rather an architecture for a set of image compression functions with a rich set of capabilities,
making it suitable for a wide range of applications that use image compression. We will give
an overview of how the encoding and decoding processes actually work and what modes
of operation are possible, which ones are actually in use at the time of writing, and which
ones are the dominant ones. After that, the definition of the baseline system and the JFIF
file format, which is the prevalent JPEG file format in use today will be given. Finally, we
will conclude this chapter and show, where actually compression and data loss comes into
play in JPEG encoding.

2.1 History and Motivation

In the early eighties of the 20th century, researchers interested in color image data com-
pression initiated some activity in ISO (International Organization for Standardization) on
a standard in the area of color image data compression. At about the same time, sev-
eral working groups of the CCITT (International Telegraph and Telephone Consultative

4

2.2. THE JPEG STANDARD

Committee), an organ of the ITU (International Telecommunication Union), the United
Nations’ Specialized Agency in the field of telecommunications, were driven by the same
goal. In order to avoid the definition of two different competing standards, the groups in
CCITT joined the working groups in ISO in 1986. In 1987, ISO and the IEC (Interna-
tional Electrotechnical Commission) created the Joint Technical Committee 1 (JTC1) in
order to standardize on the field of information technology, and one of these collaborations
under JTC1 was the now called JPEG committee (pronounce: “Jay-Peg”)1. JPEG stands
for “Joint Photographic Experts Group” and the term “Joint” reflects the fact, that this
standard was a joint development of the three aforementioned standards bodies.

Finally, in 1992, the JPEG’s standard document ([5]) with the title “Information Tech-
nology - Digital Compression and coding of continuous-tone still images - requirements and
guidelines” was approved as ISO International Standard 10918-1 (ISO IS 10918-1) and as
CCITT Recommendation T.81. To quote from its introduction, this standards document

“. . . sets out requirements and implementation guidelines for continuous-tone
still image encoding and decoding processes, and for the coded representation of
compressed image data for interchange between applications. These processes
and representations are intended to be generic, that is, to be applicable to a
broad range of applications for color and grayscale still images within commu-
nications and computer systems. [. . .] In addition to the applications addressed
by the CCITT and ISO/IEC, the JPEG committee has developped a compres-
sion standard to meet the needs of other applications as well, including desktop
publishing, graphic arts, medical imaging and scientific imaging.” [5].

2.2 The JPEG Standard

The JPEG standards document specifies three elements: an encoder, a decoder and an
interchange format. The encoder takes digital source image data and table specifications as
input, and generates compressed image data via a specified set of procedures. The decoder
takes compressed image data and table specifications as input, and generates digitally re-
constructed image data via another specified set of procedures. The interchange format is
a compressed image data representation that includes all table specifications used in the
encoding and decoding process. The interchange format is for exchange between different
application environments, e.g. two different computers, computer applications or telecom-
munication devices. Both the encoder and the decoder can be implemented in hardware
or software. The interchange format can be data that is transmitted via communications
facilities or a file in a computer system. Also, the interchange format does not specify a
complete coded image representation, e.g. application-dependent information such as color
space is outside the scope of the JPEG specification. This means, that JPEG as such is a
“colorblind” specification (see also section 2.3).

In the following sections we will give a rough introduction into some of the JPEG
coding and decoding techniques, based on the standards document ([5]) and the textbook-
like approach of [22], whose authors were members of the JPEG working group and wrote
substantial parts of the standards document during the standardization process. By no

1The reason why three standards bodies bother about standardization on a single area, like in the case of
color image data compression, lies in the fact that this area is both part of the telecommunications technology
domain (CCITT) and the computer technology domain (ISO and IEC).

5

CHAPTER 2. A BRIEF INTRODUCTION TO JPEG ENCODING AND DECODING

8 x 8 Pixel
blocks

FDCT Quantizer Entropy
encoder

Table
specifications

Table
specifications

Source Image Data Compressed
Image Data

DCT based encoder

Figure 2.1: Simplified diagram of a DCT-based encoder

means should the following be considered a detailed description of the JPEG standard or
the file formats in use today; rather it should give the reader a rough overview of the
processes involved in JPEG encoding and decoding. For a detailed description of these
issues, the reader may consult [5] and [22].

2.2.1 Compression classes

The JPEG specification specifies two fundamental classes of encoding and decoding pro-
cesses: lossy and lossless processes. The processes that are based on the discrete cosine
transform (see chapter 3) are lossy, and thereby allow for substantial compression while
producing a reconstructed image that shows high visual fidelity to the encoder’s original
source image. In order to meet the needs of applications requiring lossless compression, the
JPEG specification provides the second class of coding processes which is not based on the
DCT. For the DCT-based processes, two alternative sample precisions are specified in the
standards document: either 8 bits or 12 bits per sample. 12 bits per sample are only in
use in specialized applications such as medical imaging. For lossless processes the sample
precision is specified to be from 2 to 16 bits.

In the following, we will disregard the lossless JPEG compression class, because it is not
in widespread use2.

2.2.2 DCT-based Encoding

Figure 2.1 shows the encoding process for the case of an image with only one color component
(i.e. a grayscale image) in a simplified form. In the case of more than one color component
(the number of allowed color components per image in the JPEG specification is virtually
unlimited) each color component is treated in the same manner, independently of the other
color components.

In the encoding process the input component’s samples are grouped into 8 × 8 pixel
blocks, and each individual block is transformed by the forward DCT (FDCT) into a set
of 64 values referred to as the “DCT coefficients” (for an in-depth introduction into the
FDCT, see chapter 3). The upper left value of these values is commonly referred to as the

2Ironically, for lossless compression in digital still cameras, TIFF Rev. 6.0 was adopted in [14] instead of
the lossless JPEG compression class, whereas for lossy compression the JPEG baseline system (see section
2.2.4) was adopted.

6

2.2.2. DCT-BASED ENCODING

i i+1BlockBlock

DC i DC i+1

Diff = DC - DC ii+1

Figure 2.2: Differential encoding of the DC values of two subsequent 8× 8 blocks

DC AC 01 AC 07

AC 77AC 70

Figure 2.3: Zig-Zag encoding of AC coefficients within one 8× 8 block

“DC coefficient” or “DC value” (see figure 2.3), because it contains the average value of all
pixels prior to the FDCT step. The other 63 values are commonly referred to as the “AC
coefficients” or “AC values”. Each of these 64 coefficients is then divided (“quantized”) by
one of 64 corresponding values from a quantization table. There are no default values for
quantization tables specified in the JPEG specification3; applications or their users may
specify values in order to customize image quality for their particular viewing conditions,
display devices or preferred image characteristics.

After quantization, the DC coefficient and the 63 AC coefficients are prepared for en-
tropy encoding, as shown in figures 2.2 and 2.3: Figure 2.2 exemplifies how the current
quantized DC coefficient is used to predict the subsequent quantized DC coefficient in that
only the difference between the two is encoded. The underlying heuristics here are, that

3However, the JPEG standard ([5]) gives example tables whose properties are described as follows: “These
are based on psychovisual thresholding and are derived empirically using luminance and chrominance and
2:1 horizontal subsampling. These tables are provided as examples only and are not necessarily suitable for
any particular application.”

7

CHAPTER 2. A BRIEF INTRODUCTION TO JPEG ENCODING AND DECODING

IDCTDequantizerEntropy
decoder

Table
specifications

Table
specifications

Reconstructed
Image Data

DCT based decoder

Compressed
Image Data

Figure 2.4: Simplified diagram of a DCT-based decoder

the DC values of two subsequent 8 × 8 blocks will not differ too much and that therefore
their difference can be efficiently encoded with an entropy encoding scheme. The 63 quan-
tized AC coefficients do not undergo such a differential encoding technique, but are rather
converted into a one-dimensional zig-zag sequence, as shown in figure 2.3. After that, the
quantized coefficients in zig-zag sequence are passed to an entropy encoding procedure which
compresses the data further. One of two entropy coding procedures can be used, Huffman
coding or arithmetic coding. For Huffman encoding, the Huffman table specifications must
be provided to the encoder. For each color component, there must be one Huffman table
for encoding the DC coeffients and one Huffman table for encoding the AC coefficients,
although two color components may share a pair of Huffman tables, as is often the case for
the chroma components (the Cb and Cr components in the YCbCr color space4). In the
following we will disregard arithmetic coding, since it is not in widespread use5, although it
is generally considered to be slightly more efficient than Huffman coding. Huffman encoding
is an entropy encoding procedure that assigns a variable length code to each input symbol.
In Huffman encoding, symbols are assigned a frequency that determines their position in
a binary tree: Rarely used symbols are at the bottom of the tree whereas frequently used
symbols are nearer to the tree’s root. A symbol can now be expressed by its Huffman
code, which is the path from the root to its location in the tree. Frequently used symbols
are assigned shorter Huffman codes whereas rarely used symbols are expressed by longer
Huffman codes, resulting in overall compression. In JPEG, the Huffman code length (the
depth of the tree) is restricted to 16 bits and the Huffman tables consist of 16 values that
correspond to the number of counts of Huffman codes for the associated code length and a
list of symbol values that are sorted by Huffman code (see [5]) in order of increasing code
length. From this information, the binary tree can be easily reconstructed, but the JPEG
standard also provides algorithms that can reconstruct the symbols in the input stream of
the Huffman decoder directly from this information (see [5]).

Figure 2.4 now shows the decoding process in a simplified form. Before the start of the

4In practical usage of JPEG, the preferred color space is not RGB, but rather YCbCr, see also section
2.3

5Arithmetic coding is also subject to a patent issue, which caused application developers – or more
specific: the implementors of the Independent JPEG Group’s JPEGLib (see chapter 5) – to refrain from
implementing arithmetic coding.

8

2.2.3. MODES OF OPERATION

actual image in the decoder’s stream of input data, the encoder has placed the tables it used
for encoding the image6. This means that the decoder can first extract the required tables
from its input data stream, in order to process the rest of the input data with the help of
these tables. The first step is to reverse the entropy encoding process, which produces the
quantized DCT coefficients. With the help of the quantization tables, the DCT coefficients
can be dequantized and finally be transformed back via the IDCT process (for an in-depth
introduction into the IDCT, see chapter 3).

2.2.3 Modes of operation

The JPEG standard distinguishes four modes of operation under which the various coding
processes are defined: sequential DCT-based, progressive DCT-based, lossless, and hierar-
chical.

Sequential DCT based mode is by far the most popular mode, almost all JPEG files
found on the internet today use this mode of operation. “Sequential” means, that the image
can be decoded line by line with a minimum of memory requirements during the decoding
process and a line of the image can be rendered on the output device as soon as it is fully
decoded. In order to minimize memory requirements during decoding for images with more
than one color component, the sequential mode encoding process may also interleave pixels
from two or more color components in the input data stream. This is particularly important
if during the decoding process a color space conversion such as a conversion from YCbCr to
RGB data is required. If scans are not interleaved, complete lines of each component must
be decoded before a complete line in the target color space can be calculated. If scans are
interleaved, this color space conversion can be done “on the fly” on a per-pixel basis during
line processing. For more information on interleaving of scans, the reader may consult the
standard ([5]).

The progressive DCT-based mode is probably the second-most popular mode of opera-
tion. “Progressive” means, that the components are encoded in multiple scans. The first
scan contains a rough version of the image and subsequent scans refine the image. This way,
the user can get a rough idea of an image at a very early state, while it is transmitted via
a low bandwidth connection such as a modem to a web browser or the like and, if desired,
can cancel further downloading of the rest of the image7. Web users typically experience a
similar effect from so-called “interlaced GIF” files which are far more popular than progres-
sive mode JPEG files. The drawback of the progressive DCT-based mode are the memory
requirements: A memory buffer for the complete image must be provided during the whole
decoding process, whereas for the sequential DCT based mode only a line buffer is required.

Similar to the lossless mode, the hierarchical mode is not in general use. We will therefore
disregard it in the following with a quote from the JPEG standard ([5]), describing its
purpose:

“. . . In hierarchical mode, an image is encoded as a sequence of frames. These
frames provide reference reconstructed components which are usually needed

6This could be considered as some sort of a “file header”.
7Unfortunately, the only web browser at the time of writing which really supports progressive display of

JPEG files in progressive DCT-based mode is the Netscape 4.x browser suite, which is not the predominant
browser anymore. Later Versions of the Netscape browser suite based on the Mozilla project, and the
Internet Explorer versions from Microsoft can display JPEG files in progressive DCT-based mode, but do
not display the state after intermediate scans but rather the final output only.

9

CHAPTER 2. A BRIEF INTRODUCTION TO JPEG ENCODING AND DECODING

for prediction in subsequent frames. Except for the first frame for a given
component, differential frames encode the difference between source components
and reference reconstructed components. The coding of the differences may be
done using only DCT-based processes, only lossless processes, or DCT-based
processes with a final lossless process for each component. Downsampling and
upsampling filters may be used to provide a pyramid of spatial resolutions [. . .].
Alternatively, the hierarchical mode can be used to improve the quality of the
reconstructed components at a given spatial resolution. Hierarchical mode offers
a progressive presentation similar to the progressive DCT-based mode but is
useful in environments which have multi-resolution requirements. Hierarchical
mode also offers the capability of progressive coding to a final lossless stage.”

2.2.4 The baseline process

The “baseline process” provides a capability which is sufficient for many applications and
is the simplest form of a DCT-based JPEG decoder. It is also a requirement for all DCT-
based decoders to be capable of the baseline process. This also means, that encoding for the
baseline process guarantees, that a particular image can be decoded by every application
that decodes JPEG data. The following are the requirements of the baseline process:

• DCT-based process

• 8-bit samples within each component of the source image

• Sequential mode of operation

• Maximum of 2 AC and 2 DC tables for Huffman coding in total for all color compo-
nents

• Maximum of 4 color components

• Interleaved and non-interleaved scans possible

Any DCT-based JPEG decoder, that provides additional capabilities to the baseline process
is a decoder that uses an “extended (DCT-based) process”8.

2.3 The JPEG File Interchange Format (JFIF)

In section 2.2 we already briefly mentioned that JPEG is a “colorblind” standard, which
means that the number of color components and the choice of the color space is left up to
JPEG applications or application developers. In practice however, it is desirable to have
a color space with 3 components (or 4 in the case of CMYK) that can be transformed
into the RGB color space. A good adaption to the properties of the human visual system
is the YCbCr color space, that separates luminosity information Y (luminance) from the
color information Cb and Cr (chroma). From the standpoint of data compression, it is very
important to note that the contrast sensitivity of the human visual system for luminance
(rod vision) is much higher than for the chroma components (cone vision) because different

8 The standard defines “extended (DCT-based) process” as “a descriptive term for DCT-based encoding
and decoding processes in which additional capabilities are added to the baseline sequential process” [5].

10

2.3. THE JPEG FILE INTERCHANGE FORMAT (JFIF)

visual receptors are used to perceive luminance (rods) and chroma information (cones).
In other words: Luminance information is much more important, so chroma information
can be suppressed with no perceivable quality loss. This is called chroma subsampling
and typically works such that in one line only one chroma pixel is used per 2 luminance
pixels (4:2:2 chroma subsampling) or even one chroma pixel per 2 luminance pixels in both
horizontal and vertical direction (4:2:0 chroma subsampling)9. The JPEG standard provides
mechanisms for such subsampling of individual components and thus suggests the use of
the YCbCr color space. The following set of equations ([11]) can be used to accomplish a
color space conversion from RGB to YCbCr:

Y = 0.299 · R + 0.587 ·G + 0.114 · B
Cb = −0.1687 · R− 0.3313 ·G + 0.5 · B + 128
Cr = 0.5 · R− 0.4187 ·G− 0.0813 · B + 128

(2.1)

The reverse process, a color space conversion from YCbCr to RGB can be made with the
following equations ([11]):

R = Y + 1.402 · (Cr− 128)
G = Y− 0.34414 · (Cb− 128)− 0.71414 · (Cr− 128)
B = Y + 1.772 · (Cb− 128)

(2.2)

In 1992, Eric Hamilton of C-Cube Microsystems, a member of the JPEG committee and
chair of the editing group of part 2 of the JPEG standard10 (ISO IS 10918-2), published a
paper ([11]) of 9 pages that described a JPEG compatible file format that he named “JPEG
File Interchange Format” (JFIF), with the following features:

• PC or Mac or Unix workstation compatible

• Standard color space: one or three components. For three components, YCbCr is
used, for one component only Y is used

• Extensions in private fields (“APP0 markers”) to identify the file as a JFIF file

• Extensions in private fields to encode pixel density (aspect ratio)

• Extensions in private fields to encode pixel units (no units, dots per inch or dots per
cm)

• Extensions in private fields for thumbnail data11

All extensions to the already defined JPEG format for the JFIF format are made in so-called
APP0 markers that may contain application specific data, therefore JFIF files completely
adhere to the JPEG standard. Throughout the format specification of JPEG, the term

9The case where no subsampling is used, i.e. one chroma pixel per luminance pixel, is called 4:4:4 chroma
subsampling.

10All ISO standards require compliance tests. The purpose of part 2 of the JPEG standard document is
to provide such compliance tests for JPEG.

11A thumbnail is a low resolution version of the complete image that can be extracted very fast. This way
applications can give the user a quick overview over all JPEG files in a directory without actually having to
completely decode all images for this purpose.

11

CHAPTER 2. A BRIEF INTRODUCTION TO JPEG ENCODING AND DECODING

“marker” is used for a byte sequence starting with FF16. The byte following FF16 then
specifies the marker type. Markers with data of arbitrary length are followed by two bytes
containing the length of the marker, including the two length bytes but not the two bytes
of the marker iself. The JFIF format demands that the starting SOI (“Start Of Image”)
marker of a JPEG file is directly followed by an APP0 marker, its two length bytes and the
zero terminated ASCII string “JFIF”. The SOI marker is the byte sequence FFD816 and
the APP0 marker is made up of the byte sequence FFE016, the string “JFIF” corresponds
to the byte sequence 4A4649460016. This way, a JFIF file can be identified with high
probability by examining the first 11 bytes of the file in question: If the first four bytes
are the sequence FFD8FFE016 and after skipping the next two bytes the zero-terminated
ASCII string “JFIF” or the byte sequence 4A4649460016 is found, the file is very likely to
be a JFIF file.

The definition of the JFIF file format was widely adopted by application developers, and
today virtually all JPEG files in use are actually JFIF files. Only very few applications,
such as Adobe Illustrator, allow the creation of JPEG files that are not JFIF files12.

2.4 Compression and information loss in JPEG encoding

The astute reader might have wondered, where in the encoding or decoding processes dis-
cussed so far, any compression or data loss can be achieved at all besides from the chroma
subsampling mentioned in section 2.3. Maybe some reader also wondered, what these
“quantization tables” are all about.

The truth is, that through the FDCT and IDCT steps, no compression is achieved at
all. Apart from rounding errors, resulting from floating-point or fixed-point arithmetics,
these steps don’t even introduce any information loss. The key to JPEG compression is
the combination of the FDCT and the proper selection of quantization tables. The FDCT
process has the property of concentrating the most important parts of an 8×8 block of pixels,
with regard to the human visual system, in the upper- and leftmost corner of the 64 DCT
coefficients, just around the DC-coefficient. By carefully selecting the quantization tables,
these important values around the DC coefficient can be preserved, whereas the other DCT
coefficients are quantized to zeroes. This typically leads to the situation, that the zig-zag
encoded blocks contain some useful non-zero values right at the start of an 8×8 pixel block,
followed by long runs of zero values with a few interspersed non-zero values inbetween.
Entropy encoding can now minimize the storage requirements for this block in that it
accounts for these runs of identical values, which makes up the compression effect in JPEG
encoding. Information loss is solely introduced by non-uniform quantization table values,
varying these tables is the means of getting a user-specified compression vs. image quality
tradeoff. If all quantization table values are 1, JPEG encoding and decoding comprises
no information loss, apart from rounding errors. In theory, the JPEG standard allows
the usage of arbitrary quantization tables, but application programs for JPEG encoding
typically allow the user to specify the desired compression vs. image quality tradeoff on a
higher level of abstraction than specifying these 64 quantization values per color component

12Probably, the Independent JPEG Group’s (IJG) JPEGLib (see chapter 5) also played an important role
in the widespread adoption of the JFIF format, since this is the builtin format of this library. Another boost
probably came from the success of the World Wide Web and the fact that the major browser vendors used
the IJG’s code in their browsers for decoding JPEG images.

12

2.4. COMPRESSION AND INFORMATION LOSS IN JPEG ENCODING

Figure 2.5: Original picture at size 480000 bytes

individually. In most cases the user only specifies some “quality percentage” value, and the
application program determines suitable quantization tables from this.

As an example of how the selection of the quantization table affects image quality and
compression, we will look at a greyscale image13 and various compressed variants of it in the
JFIF format (all with 4:4:4 chroma subsampling). Figure 2.5 shows the original file with a
resolution of 800×600 pixels. Figures 2.6, 2.7, 2.8 and 2.9 show a JPEG-compressed version
at various file sizes (54680 bytes, 35336 bytes, 18573 bytes and 10807 bytes, respectively).

Figure 2.6 uses the following quantization table:

8 6 6 7 6 5 8 7
7 7 9 9 8 10 12 20
13 12 11 11 12 25 18 19
15 20 29 26 31 30 29 26
28 28 32 36 46 39 32 34
44 35 28 28 40 55 41 44
48 49 52 52 52 31 39 57
61 56 50 60 46 51 52 50

A comparison with the original file in 2.5 shows no real apparent difference while this file
has only about 11 % of the original file’s size. This quantization table already favours the
values around the DC coefficients, the highest value can be found in the last row (61). The
lowest values are in the upper left corner.

13This image is provided courtesy of Arwed Sienitzki, Sony-Wega Corporation.

13

CHAPTER 2. A BRIEF INTRODUCTION TO JPEG ENCODING AND DECODING

Figure 2.6: JPEG file at size 54680 bytes

Figure 2.7: JPEG file at size 35336 bytes

14

2.4. COMPRESSION AND INFORMATION LOSS IN JPEG ENCODING

Figure 2.8: JPEG file at size 18573 bytes

Figure 2.9: JPEG file at size 10807 bytes

15

CHAPTER 2. A BRIEF INTRODUCTION TO JPEG ENCODING AND DECODING

Figure 2.7 uses the following quantization table:

16 11 12 14 12 10 16 14
13 14 18 17 16 19 24 40
26 24 22 22 24 49 35 37
29 40 58 51 61 60 57 51
56 55 64 72 92 78 64 68
87 69 55 56 80 109 81 87
95 98 103 104 103 62 77 113
121 112 100 120 92 101 103 99

Still, only few artifacts can be found in this image, while it has only about 7 % of the
original file’s size.

Figure 2.8 uses the following quantization table:

40 28 30 35 30 25 40 35
33 35 45 43 40 48 60 100
65 60 55 55 60 123 88 93
73 100 145 128 153 150 143 128
140 138 160 180 230 195 160 170
218 173 138 140 200 255 203 218
238 245 255 255 255 155 193 255
255 255 250 255 230 253 255 248

In this quantization table already lots of table entries have the maximum value of 255, the
lowest values are again in the upper left corner. Quite some artifacts can now be seen in
this image, that has about 4 % of the original file’s size.

Figure 2.9 uses the following quantization table:

80 55 60 70 60 50 80 70
65 70 90 85 80 95 120 200
130 120 110 110 120 245 175 185
145 200 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255

In this quantization table only the values in the upper left corner don’t have the maximum
value of 255. This image is clearly of unæsthetic quality but occupies only about 2 % of
the original file’s size. In this image also the drawback of grouping pixels into 8× 8 blocks
can be seen in that so called “blocking artifacts” appear and the grouping into these blocks
becomes immediately visible to the viewer.

16

Chapter 3

The Discrete Cosine Transform

And when God gave out rhythm,
he sure was good to you.
You can add, subtract, multiply and divide . . . by two.

– From the song “Popsicle Toes” by Michael Franks, 1976

The Discrete Cosine Transform (DCT) is the transformation that is at the heart of JPEG
compression and decompression. It was proposed in 1972 to the American National

Science Foundation by Nasir Ahmed as an algorithm to achieve bandwidth compression.
According to Ahmed, the proposal was not funded because the reviewers found “the whole
idea seemed too simple” [1]. Ahmed continued to work on the DCT together with his Ph.D.
student Raj Natarajan and Ram Mohan Rao and published it in a paper ([20]) in 1974.

In applications of the DCT, such as JPEG encoding and decoding, the bandwidth com-
pression is achieved by transforming the digital image via the DCT into the DCT Frequency
Domain where those portions of the image that are less important or imperceptible for the
human eye appear clearly separated from the perceptible features of the image and thus
can be removed. But the DCT is not only relevant for still images like in JPEG, it is also
an integral part of moving picture standards like MPEG-1 and MPEG-2.

The DCT is also of particular importance for other compression standards, such as
Dolby AC-3 which is used as the audio compression standard for HDTV, where a modified
version of the DCT has been adopted.

This chapter deals with the mathematical definition and gives an overview over several
fast DCT implementations. It also contains a comparison of the DCT and the Discrete
Fourier Transform (DFT) that shows that the DCT is a special case of the DFT for a real
and symmetrical input vector and how a DFT on a real input vector can be split into several
DFTs and DCTs and vice versa, following a Divide-and-Conquer scheme.

3.1 Mathematical Definition of the DCT

3.1.1 The one-dimensional DCT

The process of transforming a one-dimensional set of N real valued samples into the DCT
Frequency Domain is called the forward discrete cosine transform (FDCT) and creates a set

17

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

with the same number of real valued samples which are often called the DCT coefficients.
The reverse process that recreates the original image from the DCT coefficients is called the
inverse discrete cosine transform (IDCT). The definitions of the N-point FDCT and IDCT
are as follows ([20]):

FDCT: F̃ (u) =
2
N

c(u)
N−1∑
n=0

f(n) cos
(2n + 1) uπ

2N
, u = 0, . . . , N − 1 (3.1)

IDCT: f(n) =
N−1∑
u=0

c(u)F̃ (u) cos
(2n + 1) uπ

2N
, n = 0, . . . , N − 1 (3.2)

where n, u ∈ N and

c(u) = 1√
2

for u = 0
c(u) = 1 for u > 0
f(n) = 1-D sample value
F̃ (u) = 1-D DCT coefficient

(3.3)

In the following, we will use the definition from ([23]) and ([22]) where the normalization
constant 2/N of the FDCT is equally distributed over the FDCT and IDCT:

FDCT: F̃ (u) =

√
2
N

c(u)
N−1∑
n=0

f(n) cos
(2n + 1) uπ

2N
, u = 0, . . . , N − 1 (3.4)

IDCT: f(n) =

√
2
N

N−1∑
u=0

c(u)F̃ (u) cos
(2n + 1) uπ

2N
, n = 0, . . . , N − 1 (3.5)

For JPEG encoding and decoding, the number of samples is always N = 8, so equations
(3.4) and (3.5) become equations (3.6) and (3.7):

FDCT: F̃ (u) =
c(u)
2

7∑
n=0

f(n) cos
(2n + 1) uπ

16
, u = 0, . . . , 7 (3.6)

IDCT: f(n) =
7∑

u=0

c(u)
2

F̃ (u) cos
(2n + 1) uπ

16
, n = 0, . . . , 7 (3.7)

The FDCT can be exemplified as a decomposition of an input sample vector into a scaled set
of cosine base function vectors with the DCT coefficients as the scaling values. Summing up
the scaled cosine base functions vectors then corresponds to the IDCT process. The DCT
as defined in equation (3.4) is an orthonormal transform (see [23]), which simply means,
that the inner product of any two different cosine base function vectors is always zero1 and

1Two vector’s inner product is 0 if the vectors are orthogonal, therefore the ortho- in orthonormal trans-
form

18

3.1.2. THE TWO-DIMENSIONAL DCT

that the inner product of a cosine base function vector with itself is always one2. This
also means, that no cosine base function can be represented by a scaled sum of different
cosine base functions and that all possible input vectors can be represented by a sum of
scaled cosine base function vectors with the scaling values (DCT coefficients) being unique
for each input vector. In this respect, the Cosine Transform is very similar to the Fourier
Transform while having the advantage of being a real transform. The obvious similarities
and relations between the DCT and the Discrete Fourier Transform are covered in chapter
3.2. A nice and intuitive introduction into the DCT and its similarities with the Fourier
Transform can also be found in [2].

3.1.2 The two-dimensional DCT

If the DCT is to be applied to two-dimensional image arrays, the one-dimensional DCT
is extended to the two-dimensional DCT (2D-DCT). Again, the two-dimensional FDCT
(2D FDCT) transforms the image samples into the DCT Frequency Domain and the two-
dimensional IDCT (2D IDCT) is the reverse operation that recreates the original sample
values. The definitions for JPEG ([5], [33]) and other standards that employ an 8-point
DCT are as follows:

2D FDCT:

F̃ (u, v) =
c(u)
2

c(v)
2

7∑
n=0

7∑
m=0

f(n, m) cos
(2n + 1) uπ

16
cos

(2m + 1) vπ

16
, u, v = 0, . . . , 7

(3.8)

2D IDCT:

f(n, m) =
7∑

u=0

c(u)
2

7∑
v=0

c(v)
2

F̃ (u, v) cos
(2n + 1) uπ

16
cos

(2m + 1) vπ

16
, n,m = 0, . . . , 7

(3.9)

where n, m, u, v ∈ N and

c(u) = 1√
2

for u = 0
c(u) = 1 otherwise
c(v) = 1√

2
for v = 0

c(v) = 1 otherwise
f(n, m) = 2-D sample value
F̃ (u, v) = 2-D DCT coefficient

(3.10)

Equations (3.8) and (3.9) suggest that the calculation of one DCT coefficient requires 64
multiplications and 63 additions, but the two-dimensional DCT can be separated into 16

2Two vector’s inner product is 1, if they are normalized, therefore the -normal in orthonormal transform

19

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

one-dimensional DCTs, as (3.11) and (3.12) illustrate:

2D FDCT:

F̃ (u, v) =
c(u)
2

c(v)
2

7∑
n=0

(
cos

(2n + 1) uπ

16

7∑
m=0

f(n, m) cos
(2m + 1) uπ

16

)
, u, v = 0, . . . , 7

(3.11)

2D IDCT:

f(n, m) =
7∑

u=0

(
c(u)
2

cos
(2n + 1) uπ

16

7∑
v=0

c(v)
2

F̃ (u, v) cos
(2m + 1) uπ

16

)
, n,m = 0, . . . , 7

(3.12)

This means, that a two-dimensional DCT can be obtained by applying first 8 one-dimen-
sional DCTs over the rows, followed by another 8 one-dimensional DCTs to the columns of
the input data matrix. Furthermore, there are quite a number of algorithms that reduce
computational complexity drastically. Most of them are based on earlier work done on
the Fast Fourier Transform, that preceeded the DCT about 10 years3, and on the Discrete
Fourier Transform in general. Because of the similarities between the Discrete Fourier
Transform and the DCT it is therefore worthwile looking into the relations between these
two orthogonal transforms.

3.2 Relations between the DCT and the DFT

In their introductory paper to the DCT ([20]), Ahmed et al. suggested to use existing
Fast Fourier Transform algorithms to compute an N-point DCT from a 2N-point DFT.
Section 3.2.1 elaborates on their initial proposal. The DCT is also very closely related
to the Discrete Fourier Transform (DFT) on real inputs (which is the case for 2D image
arrays). This relationship is the basis for the most efficient DCT algorithms known up to
now. Section 3.2.2 shows, how an N-point DFT can be calculated from one N/2-point DFT
and two N/4-point DCTs, which is the basis for the Ligtenberg-Vetterli Fast DCT and
similar algorithms. Section 3.2.3 then shows the relations between the N-point DCT and
the 2N-point DFT for the special case of a symmetrical input vector for the DFT, which
is the basis for the fastest scaled one-dimensional DCT algorithm known up to now, the
Arai-Agui-Nakajima Fast DCT.

3The famous Cooley-Tukey algorithm ([6]) was presented in 1965

20

3.2.1. COMPUTING AN N-POINT DCT FROM A 2N-POINT DFT

3.2.1 Computing an N-point DCT from a 2N-point DFT

An N-point DFT ([3]) is defined as:

F (u) =
N−1∑
n=0

f(n)e−j 2πnu
N =

N−1∑
n=0

f(n)
[
cos
(

2πnu

N

)
− j sin

(
2πnu

N

)]
, (3.13)

u = 0, . . . , N − 1

with j =
√
−1. Consequently, a 2N-point DFT is defined as:

F (u) =
2N−1∑
n=0

f(n)e−j 2πnu
2N , u = 0, . . . , 2N − 1 (3.14)

If we scale equation (3.14)with e−juπ/(2N) and assume that the input samples f(N) . . .
f(2N − 1) are zero, we get:

e −j πu
2N ·

N−1∑
n=0

f(n)e−j 2πnu
2N =

N−1∑
n=0

f(n)e−j
uπ(2n+1)

2N

=
N−1∑
n=0

f(n)
(

cos
(

uπ(2n + 1)
2N

)
− j sin

(
uπ(2n + 1)

2N

))
, u = 0, . . . , 2N − 1

(3.15)

From equation (3.15) and a comparison with equations (3.1) and (3.4) we can deduce,
that an N-point DCT can be computed by taking the real part of a 2N-point DFT that
was scaled by the complex constant e−juπ/(2N). Note that this was an early suggestion of
Ahmed et al. in their introductory paper to the DCT ([20]) on how to calculate a DCT
leveraging existing algorithms or hardware for the calculation of the DFT. By no means,
this calculation method should be considered a particularly efficient one.

3.2.2 A Divide-and-Conquer Scheme for real input vectors

In [32], Vetterli and Nussbaumer present a simple approach to break the task of calculating
an N-point DFT into transformations of reduced complexity for real input vectors. For this
purpose they define two operations, the Cosine DFT and the Sine DFT, that together rep-
resent the DFT operation. The Cosine DFT represents the real part of the DFT operation,
whereas the Sine DFT represents the imaginary part of the DFT operation. They also use
a slightly modified version of the DCT, which, in order to not confuse the reader, is called
DCT* in the following. Vetterli and Nussbaumer also introduce the following notation for
the N-point DFT of a function f(n) which is the same as we already introduced in equation
(3.13):

DFT(u,N, f) =
N−1∑
n=0

f(n)e−j 2πnu
N =

N−1∑
n=0

f(n)
[
cos
(

2πnu

N

)
− j sin

(
2πnu

N

)]
,

u = 0, . . . , N − 1 (3.16)

21

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

with j =
√
−1. Vetterli and Nussbaumer define the Sine DFT (sin-DFT) and the Cosine

DFT (cos-DFT) as:

sin-DFT(u, N, f) =
N−1∑
n=0

f(n) sin
(

2πnu

N

)
, u = 0, . . . , N − 1 (3.17)

cos-DFT(u, N, f) =
N−1∑
n=0

f(n) cos
(

2πnu

N

)
, u = 0, . . . , N − 1 (3.18)

The Sine DFT from equation (3.17) and the Cosine DFT from equation (3.18) together
constitute the DFT from equation (3.16):

DFT(u, N, f) = cos-DFT(u, N, f)− j · sin-DFT(u, N, f), u = 0, . . . , N − 1 (3.19)

The DCT* Operation is defined as:

DCT*(u, N, f) =
N−1∑
n=0

f(n) cos
(

2π(2n + 1)u
4N

)
, u = 0, . . . , N − 1 (3.20)

Note that the DCT* in equation (3.20) is just a simplified form of the forward DCT in

equation (3.4) without the scaling of
√

2
N and the factor 1/

√
2 for u = 0. By exploiting

symmetry properties of the Sine and Cosine functions and under the assumption that N is
divisible by 4, equation (3.18) can be rewritten as:

cos-DFT(u, N, f) =
N/2−1∑
n=0

f(2n) cos
(

2πnu

N/2

)
(3.21)

+
N/4−1∑
n=0

(f(2n + 1) + f(N − 2n− 1)) cos
2π(2n + 1)u

4N/4
,

u = 0, . . . , N − 1

or with f1(n) = f(2n) for n = 0, . . . N/2 − 1 and f2(n) = f(2n + 1) + f(N − 2n − 1) for
n = 0, . . . N/4− 1 as:

cos-DFT(u, N, f) = cos-DFT(u, N/2, f1)+DCT*(u, N/4, f2), u = 0 . . . , N − 1 (3.22)

Equation (3.22) shows, that an N-point Cosine DFT can be divided into an N/2-point Cosine
DFT and an N/4-point DCT*. The N/2-point Cosine DFT can further be subdivided until
only trivial operations are left. Similarly, the Sine DFT in equation (3.17) can be rewritten
as:

sin-DFT(u, N, f) =
N/2−1∑
n=0

f(2n) sin
(

2πnu

N/2

)
(3.23)

+
N/4−1∑
n=0

(f(2n + 1) + f(N − 2n− 1)) sin
2π(2n + 1)u

4N/4
,

u = 0, . . . , N − 1

22

3.2.2. A DIVIDE-AND-CONQUER SCHEME FOR REAL INPUT VECTORS

Using the identity:

sin
2πn(2n + 1)u

N
= (−1)n cos

2π(2n + 1)(N/4− u)
N

(3.24)

equation (3.23) can be written in a more succinct form as:

sin-DFT(u, N, f) = sin-DFT(u, N/2, f1)+DCT*(N/4−u,N/4, f3), u = 0 . . . , N−1
(3.25)

with f3(n) = (−1)n (f(2n + 1)− f(N − 2n− 1)). Equation (3.25) shows, that an N-point
Sine DFT can be subdivided into an N/2 point Sine DFT and an N/4-point DCT*. Together
with equation (3.22) this means, that an N-point DFT can be subdivided into one N/2-point
DFT and two N/4-point DCT* operations.

We will now show how to do the reverse process and therefore compute a DCT* operation
from a Sine DFT and a Cosine DFT:

With the mapping:

f4(n) = f(2n),
f4(N − n− 1) = f(2n + 1), n = 0 . . . , N/2− 1

the DCT* in equation (3.20) becomes:

DCT*(u, N, f) =
N−1∑
n=0

f4(n) cos
(

2π(4n + 1)u
4N

)
, u = 0, . . . , N − 1 (3.26)

With the basic geometrical identity cos(α + β) = cos α cos β − sinα sinβ, equation (3.26)
becomes:

DCT*(u, N, f) = cos
(

2πu

4N

)
cos-DFT(u, N, f4)

− sin
(

2πu

4N

)
sin-DFT(u, N, f4), u = 0, . . . , N − 1

(3.27)

Using the symmetry properties of trigonometric functions and the Sine and Cosine DFT,
this can be written as:

(
DCT*(u, N, f)

DCT*(N − u, N, f)

)
=
(

cos(2πu
4N) − sin

(
2πu
4N

)
sin(2πu

4N) cos(2πu
4N)

)(
cos-DFT(u,N, f4)
sin-DFT(u, N, f4)

)
u = 0 . . . , N/2− 1 (3.28)

Equation (3.28) is a rotation of a vector consisting of the real and the imaginary part of the
DFT with a rotation angle of 2πu/4N . Thus we have shown how to compute a DCT* (and
thus a DCT) from a DFT (equation (3.28)) and vice versa (equations (3.22) and (3.25)). We
will show in section 3.3.2.1 that this rotation only requires 3 multiplications and 3 additions.
In section 3.3.2.2 we will show how to transform this into flowgraphs for an 8-point DCT.

23

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

3.2.3 DCT and DFT for real and symmetrical input vectors

In [29], Tseng and Miller show, that if the mirror image of a sequence of N samples is
appended to itself, the first N points of the 2N-point DFT performed on this vector of
size 2N are scaled values of the DCT coefficients of the original N-point sequence. They
conclude that an N-point DCT can therefore be very efficiently calculated by taking one
double length real DFT 4 and a final output scaling, which will be shown in the following.
If we use the shortcut WK = e−j 2π

K , the K-point DFT (see equation (3.13)) can be written
as:

F (u) =
K−1∑
n=0

f(n)W un
K , u = 0, . . . ,K − 1 (3.29)

If we set K = 2N and extend the N-point sequence f(n), n = 0, . . . , N − 1 such that there
is symmetry around the index (2N − 1)/2, we get:

f(n) = f(2N − 1− n), n = 0, . . . , 2N − 1 (3.30)

and equation (3.29) becomes:

F (u) =
N−1∑
n=0

f(n)W un
2N +

2N−1∑
n=N

f(2N − n− 1)W un
2N , u = 0, . . . , 2N − 1 (3.31)

Now if we define a new index k = (2N − n − 1) for the the second sum in equation (3.31)
this becomes:

F (u) =
N−1∑
n=0

f(n)W un
2N +

N−1∑
k=0

f(k)W−u(k+1)
2N , u = 0, . . . , 2N − 1 (3.32)

If k is now replaced with n and equation (3.32) is multiplied by 1
2W

u
2

2N , we obtain:

1
2
F (u)W

u
2

2N =
1
2

N−1∑
n=0

f(n)
(

W
u
2
(2n+1)

2N + W
−u
2

(2n+1)

2N

)

=
1
2

N−1∑
n=0

f(n)
(
e−jπ u

2N
(2n+1) + ejπ u

2N
(2n+1)

)
=

N−1∑
n=0

f(n) cos
πu

2N
(2n + 1), u = 0, . . . , 2N − 1 (3.33)

From equation (3.33) we can deduce that the first N DFT coefficients of a 2N-point DFT
are the DCT coefficients of an N point DCT, scaled by a complex scaling factor, provided
that equation (3.30) holds for the input vector.

Our goal will now be to calculate this scaling factor: Since the right side of equation
(3.33) is real, the left side must also be real and we therefore can obtain the real part Au

and the imaginary part Bu of F (u) with:

F (u)W
u
2

2N = (Au + jBu)(cos
πu

2N
− j sin

πu

2N
), u = 0, . . . , 2N − 1 (3.34)

4A real DFT denotes a DFT with real input, in contrast to a complex DFT with a complex input vector

24

3.3. FAST ONE-DIMENSIONAL 8-POINT DCTS

Separating equation (3.34) into a real and an imaginary parts and setting the imaginary
part to zero we get:

Bu = Au
sin πu

2N

cos πu
2N

(3.35)

which can be substituted back into equation (3.34):

F (u)W
u
2

2N = Au cos
πu

2N
+ Au

sin2 πu
2N

cos πu
2N

= Au
1

cos πu
2N

(cos2
πu

2N
+ sin2 πu

2N
)

= Au
1

cos πu
2N

, u = 0, . . . , 2N − 1 (3.36)

From equations (3.33) and (3.36) we now get:

N−1∑
n=0

f(n) cos
πu

2N
(2n + 1) =

1
2
<(F (u))

1
cos πu

2N

, u = 0, . . . , 2N − 1 (3.37)

This shows that the DCT coefficients of an N-point DCT can simply be derived from scaling
the real part of a 2N-point DFT with symmetrical input vector. Chapter 3.3.6 will show
that for N = 8 this property is the basis of the Arai-Agui-Nakajima Fast DCT.

3.3 Fast one-dimensional 8-point DCTs

This section will cover in detail several fast one-dimensional DCT algorithms that have
been developed over the years both for software and hardware implementations. Because
of the widespread use of 8-point DCTs and IDCTs in continuous tone image encoding and
decoding, we will strictly focus on algorithms for an 8-point input vector. This also means
that we don’t evaluate the complexity of algorithms in terms of ”Big-Oh-Notation”, such as
O(N), O(N2), O(logN), because N = 8 is a fixed value. We rather compare algorithms by
evaluating the number of additions and multiplications they require. In order to describe
the algorithms a graphical notation, the flowgraph, will be introduced. We will start with
a very simple 8-point DCT, taken from [22], that demonstrates how the symmetry of the
sine and cosine function can be exploited to reduce computational complexity of the DCT.
We will then proceed in section 3.3.2 to the first classical DCT algorithm, the Ligtenberg-
Vetterli DCT (1986), that we analyze first with an algebraic approach (section 3.3.2.1) and
then with a more graphical and intuitive approach (section 3.3.2.2). From there we will
turn to the Loeffler-Ligtenberg-Moschytz DCT (1989) and its inverse, which is the fastest
unscaled one-dimensional DCT known up to now. The section on fast one-dimensional
8-point DCTs is then concluded with section 3.3.6 that contains an analysis of the Arai-
Agui-Nakajima Fast DCT (1988) and its inverse, which is the fastest scaled one-dimensional
DCT known up to now. For this algorithm the “Winograd 16-point small-N DFT” is of
particular importance. Therefore we will analyze this algorithm as well.

25

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

3.3.1 A simple and fast 8-point DCT

A simple approach ([22]) for a fast DCT takes advantage of the symmetry of sinusoidal
functions. With the following definitions:

Ck = cos
kπ

16
, Sk = sin

kπ

16
, k = 0, . . . , 7 (3.38)

we get from the symmetry property of the cosine and sine functions:

C1 = S7, C2 = S6, ..., C7 = S1 (3.39)

and

C1 = −C15, C2 = −C14, ..., C7 = −C9. (3.40)

We therefore define the following shortcuts for sums (3.41) and differences (3.42) of the
samples f(n):

s07 = f(0) + f(7)
s16 = f(1) + f(6)
s25 = f(2) + f(5)
s34 = f(3) + f(4)
s0734 = s07 + s34

s1625 = s16 + s25

(3.41)

d07 = f(0)− f(7)
d16 = f(1)− f(6)
d25 = f(2)− f(5)
d34 = f(3)− f(4)
d0734 = s07 − s34

d1625 = s16 − s25

(3.42)

With the shortcuts from equations (3.41) and (3.42), the DCT coefficients from (3.6) can
be written as:

2F̃ (0) =
1√
2

7∑
n=0

f(n) cos(0) = cos
4π

16

7∑
n=0

f(n) = C4(s0734 + s1625) (3.43)

2F̃ (1) = cos
π

16
f(0) + cos

3π

16
f(1) + cos

5π

16
f(2) + cos

7π

16
f(3)

+ cos
9π

16
f(4) + cos

11π

16
f(5) + cos

13π

16
f(6) + cos

15π

16
f(7)

= cos
π

16
[f(0)− f(7)] + cos

3π

16
[f(1)− f(6)]

+ cos
5π

16
[f(2)− f(5)] + cos

7π

16
[f(3)− f(4)]

= C1d07 + C3d16 + C5d25 + C7d34 (3.44)

26

3.3.1. A SIMPLE AND FAST 8-POINT DCT

2F̃ (2) = cos
2π

16
f(0) + cos

6π

16
f(1) + cos

10π

16
f(2) + cos

14π

16
f(3)

+ cos
18π

16
f(4) + cos

22π

16
f(5) + cos

26π

16
f(6) + cos

30π

16
f(7)

= cos
2π

16
[f(0) + f(7)− f(3)− f(4)]

+ cos
6π

16
[f(1) + f(6)− f(2)− f(5)]

= C2d0734 + C6d1625 (3.45)

2F̃ (3) = cos
3π

16
f(0) + cos

9π

16
f(1) + cos

15π

16
f(2) + cos

21π

16
f(3)

+ cos
27π

16
f(4) + cos

33π

16
f(5) + cos

39π

16
f(6) + cos

45π

16
f(7)

= cos
3π

16
[f(0)− f(7)]− cos

7π

16
[f(1)− f(6)]

+ cos
7π

16
[f(2)− f(5)]− cos

5π

16
[f(3)− f(4)]

= C3d07 − C7d16 − C1d25 − C5d34 (3.46)

2F̃ (4) = cos
4π

16
f(0) + cos

12π

16
f(1) + cos

20π

16
f(2) + cos

28π

16
f(3)

+ cos
36π

16
f(4) + cos

44π

16
f(5) + cos

52π

16
f(6) + cos

60π

16
f(7)

= cos
4π

16
[f(0) + f(3) + f(4) + f(7)− f(1)− f(2)− f(5)− f(6)]

= C4(s0734 − s1625) (3.47)

2F̃ (5) = cos
5π

16
f(0) + cos

15π

16
f(1) + cos

25π

16
f(2) + cos

35π

16
f(3)

+ cos
45π

16
f(4) + cos

55π

16
f(5) + cos

65π

16
f(6) + cos

75π

16
f(7)

= cos
5π

16
[f(0)− f(7)]− cos

π

16
[f(1)− f(6)]

+ cos
7π

16
[f(2)− f(5)] + cos

3π

16
[f(3)− f(4)]

= C5d07 − C1d16 + C7d25 + C3d34 (3.48)

2F̃ (6) = cos
6π

16
f(0) + cos

18π

16
f(1) + cos

30π

16
f(2) + cos

42π

16
f(3)

+ cos
54π

16
f(4) + cos

66π

16
f(5) + cos

78π

16
f(6) + cos

90π

16
f(7)

= cos
6π

16
[f(0) + f(7)− f(3)− f(4)] + cos

2π

16
[f(2) + f(5)− f(1)− f(6)]

= C6d0734 − C2d1625 (3.49)

27

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

2F̃ (7) = cos
7π

16
f(0) + cos

21π

16
f(1) + cos

35π

16
f(2) + cos

49π

16
f(3)

+ cos
63π

16
f(4) + cos

77π

16
f(5) + cos

91π

16
f(6) + cos

105π

16
f(7)

= cos
7π

16
[f(0)− f(7)]− cos

5π

16
[f(1)− f(6)]

+ cos
3π

16
[f(2)− f(5)]− cos

π

16
[f(3)− f(4)]

= C7d07 − C5d16 + C3d25 − C1d34 (3.50)

By arranging the terms in equations (3.43)-(3.50), the sums and differences from equations
(3.41) and (3.42) can be reused to calculate the DCT coefficients and thus the total amount
of operations is reduced to 22 multiplications and 28 additions. This is quite some progress,
compared to the näıve approach of calculating each of the 8 coefficients by 7 additions and
8 multiplications.

3.3.2 The Ligtenberg-Vetterli-DCT

In this section an algorithm is presented that was introduced by Ligtenberg and Vetterli
and implemented in hardware as early as 1986 ([31]). It employs the Divide-and-Conquer
scheme presented in section 3.2.2. We will first use in section 3.3.2.1 the algebraic approach
from [22], which should be enough to successfully implement this algorithm and requires no
prior understanding of section 3.2.2. Section 3.3.2.2 will then use a more intuitive approach
and will show how to graphically derive a flowgraph for this algorithm based on chapter
3.2.2.

3.3.2.1 An algebraic approach to the Ligtenberg-Vetterli-DCT

The Ligtenberg-Vetterli-DCT uses equations (3.43)-(3.50) and the sums and differences
from equations (3.41) and (3.42), but with slightly different grouping:

2F̃ (0) = C4 [(s07 + s12) + (s34 + s56)] (3.51)

2F̃ (1) = C1d07 + C3d16 + C5d25 + C7d34

= (C1d07 + S1d34) + (C3d16 + S3d25) (3.52)

2F̃ (2) = C2(s07 − s34) + C6(d12 − d56)
= C6(d12 − d56) + S6(s07 − s34) = C−6(d12 − d56)− S−6(s07 − s34) (3.53)

2F̃ (3) = C3d07 − (C5d34 + C7d16 + C1d25)
= (C3d07 − S3d34)− (S1d16 + C1d25) (3.54)

2F̃ (4) = C4 [(s07 + s34)− (s12 + s56)] (3.55)

2F̃ (5) = C5d07 + C7d25 + C3d34 − C1d16

= (S3d07 + C3d34) + (S1d25 − C1d16) (3.56)

28

3.3.2.1. AN ALGEBRAIC APPROACH TO THE LIGTENBERG-VETTERLI-DCT

2F̃ (6) = C6(s07 − s34) + C2(s25 − s16)
= −S6(d12 − d56) + C6(s07 − s34) = S−6(d12 − d56) + C−6(s07 − s34) (3.57)

2F̃ (7) = C7d07 + C3d25 − (C5d16 + C1d34)
= (S1d07 − C1d34) + (C3d25 − C5d16) (3.58)

From the standard geometric identities

cos α− cos β = −2 sin
α + β

2
sin

α− β

2
(3.59)

and

cos α + cos β = 2 cos
α + β

2
cos

α− β

2
(3.60)

we get for k, l ∈ N:

Ck − Cl = −2sin
(k + l)π

32
sin

(k − l)π
32

= −2S(k+l)/2S(k−l)/2 (3.61)

Ck + Cl = 2cos
(k + l)π

32
cos

(k − l)π
32

= 2C(k+l)/2C(k−l)/2 (3.62)

From (3.51) and (3.55) we can deduce, that F̃ (0) and F̃ (4) can be calculated very straight-
forward by simple additions and a multiplication. For all other DCT coefficients, the
Ligtenberg-Vetterli Fast DCT employs the rotation operation, that was introduced in sec-
tion 3.2.2. The rotation operation rotates two input values (x, y) to output values (X, Y)
by an angle Θ using the following equations:

X = x cos Θ− y sinΘ (3.63)

Y = x sinΘ + y cos Θ (3.64)

For a rotation angle Θ = kπ
16 , equations (3.63) and (3.64) become:

X = Ckx− Sky (3.65)

Y = Skx + Cky (3.66)

which can be expressed as:

X = Ck(x + y)− (Sk + Ck)y (3.67)

Y = (Sk − Ck)x + Ck(x + y) (3.68)

29

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

with Sk and Ck defined as in equation (3.38). Note that equations (3.65) and (3.66) require
four multiplications and two additions whereas equations (3.67) and (3.68) require only
three multiplications and three additions (Sk ±Ck are constants that can be precalculated)
which is advantageous if a multiplication is costlier than an addition on a given computer
hardware.

From (3.53) and (3.57) we can see that calculating 2F̃ (2) and 2F̃ (6) is simply a rotation
of the inputs x = (d12 − d56) and y = (s07 − s34) with a rotation angle of Θ = −6π

16 . In
order to calculate the other DCT coefficients with a rotation, some additional recasting is
required to bring the terms for the DCT coefficients into a form that is suitable for the
rotation operation:

For F̃ (3), the term (S1d16 + C1d25) in (3.54) can be expressed in terms of a sum of
s12, d12, s56 and d56 with four unknown coefficients A, B, C and D:

S1d16 + C1d25 = As12 + Bd12 + Cs56 + Dd56 (3.69)

Solving the coefficients with four separate equations for f(1), f(2), f(5) and f(6) yields:

f(1) : S1 = A + B
f(2) : C1 = A−B
f(5) : −C1 = C + D
f(6) : −S1 = C −D

(3.70)

Adding and subtracting the equations in (3.70) the unknown coefficients A, B, C and D
become:

A = 1
2(S1 + C1) = 1

2(C7 + C1) = C4C3

B = 1
2(S1 − C1) = 1

2(C7 − C1) = −S4S3 = −C4S3

C = −1
2(C1 + S1) = −1

2(C7 + C1) = −C4C3

D = 1
2(S1 − C1) = 1

2(C7 − C1) = −S4S3 = −C4S3

(3.71)

With (3.71) the term (S1d16 + C1d25) can be expressed as:

S1d16 + C1d25 = C4 [C3(s12 − s56)− S3(d12 + d56)] (3.72)

and thus (3.54) becomes:

2F̃ (3) = [C3d07 − S3d34]− C4 [C3(s12 − s56)− S3(d12 + d56)] (3.73)

For F̃ (5) we again express the term (S1d25−C1d16) in (3.56) in terms of a sum of s12, d12, s56

and d56 with four unknown coefficients A, B, C and D:

S1d25 − C1d16 = As12 + Bd12 + Cs56 + Dd56 (3.74)

Solving the coefficients with four separate equations for f(1), f(2), f(5) and f(6) yields:

f(1) : −C1 = A + B
f(2) : S1 = A−B
f(5) : −S1 = C + D
f(6) : C1 = C −D

(3.75)

30

3.3.2.1. AN ALGEBRAIC APPROACH TO THE LIGTENBERG-VETTERLI-DCT

Again, adding and subtracting the equations in (3.75) the unknown coefficients A, B, C
and D become:

A = −1
2(C1 − S1) = 1

2(C7 − C1) = −S4S3 = −C4S3

B = −1
2(C1 + S1) = −1

2(C1 + C7) = −C4C3

C = −1
2(S1 − C1) = −1

2(C7 − C1) = S4S3 = C4S3

D = −1
2(S1 + C1) = −1

2(C7 + C1) = −C4C3

(3.76)

With (3.76) the term S1d25 − C1d16 can be expressed as:

S1d25 − C1d16 = C4 [−S3(s12 − s56)− C3(d12 + d56)] (3.77)

and thus (3.56) becomes:

2F̃ (5) = [S3d07 + C3d34] + C4 [−S3(s12 − s56)− C3(d12 + d56)] (3.78)

Rearranging equations (3.73) and (3.78) gives:

2F̃ (3) = C3 [d07 − C4(s12 − s56)]− S3 [d34 − C4(d12 + d56)]
2F̃ (5) = S3 [d07 − C4(s12 − s56)] + C3 [d34 − C4(d12 + d56)]

(3.79)

which is a rotation of x = d07 − C4(s12 − s56) and y = d34 − C4(d12 + d56) with a rotation
angle of Θ = 3π

16 .
The two remaining DCT coefficients, F̃ (1) and F̃ (7), can be calculated in a similar way

to F̃ (3) and F̃ (5):
First the term (C3d16 + S3d25) in (3.52) is expressed in terms of a sum of s12, d12, s56

and d56 with four unknown coefficients A, B, C and D:

C3d16 + S3d25 = As12 + Bd12 + Cs56 + Dd56 (3.80)

Solving the coefficients with four separate equations for f(1), f(2), f(5) and f(6) yields:

f(1) : C3 = A + B
f(2) : S3 = A−B
f(5) : −S3 = C + D
f(6) : −C3 = C −D

(3.81)

Again, adding and subtracting the equations in (3.81) the unknown coefficients A, B, C
and D become:

A = 1
2(C3 + S3) = 1

2(C3 + C5) = C4C1

B = 1
2(C3 − S3) = −1

2(C5 − C3) = S4S1 = C4S1

C = −1
2(S3 + C3) = −1

2(C5 + C3) = −C4C1

D = −1
2(S3 − C3) = −1

2(C5 − C3) = S4S1 = C4S1

(3.82)

With (3.82) the term C3d16 + S3d25 can be expressed as:

C3d16 + S3d25 = C4 [C1(s12 − s56) + S1(d12 + d56)] (3.83)

and thus (3.52) becomes:

2F̃ (1) = (C1d07 + S1d34) + C4 [C1(s12 − s56) + S1(d12 + d56)] (3.84)

31

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

For S(7) we again express the term (C3d25−C5d16) in (3.58) in terms of a sum of s12, d12, s56

and d56 with four unknown coefficients A, B, C and D:

C3d25 − C5d16 = As12 + Bd12 + Cs56 + Dd56 (3.85)

Solving the coefficients with four separate equations for f(1), f(2), f(5) and f(6) yields:

f(1) : −C5 = A + B
f(2) : C3 = A−B
f(5) : −C3 = C + D
f(6) : C5 = C −D

(3.86)

Again, adding and subtracting the equations in (3.86) the unknown coefficients A, B, C
and D become:

A = 1
2(C3 − C5) = S4S1 = C4S1

B = −1
2(C5 + C3) = −C4C1

C = 1
2(C5 − C3) = −S4S1 = −C4S1

D = −1
2(C5 + C3) = −C4C1

(3.87)

With (3.87) the term C3d25 − C5d16 can be expressed as:

C3d25 − C5d16 = C4 [S1(s12 − s56)− C1(d12 + d56)] (3.88)

and thus (3.58) becomes:

2F̃ (7) = (S1d07 − C1d34) + C4 [S1(s12 − s56)− C1(d12 + d56)] (3.89)

Rearranging equations (3.84) and (3.89) gives:

2F̃ (1) = C1 [d07 + C4(s12 − s56)]− S1 [−d34 − C4(d12 + d56)]
2F̃ (7) = S1 [d07 + C4(s12 − s56)] + C1 [−d34 − C4(d12 + d56)]

(3.90)

which is a rotation of x = d07 + C4(s12− s56) and y = −d34−C4(d12 + d56) with a rotation
angle of Θ = π

16 .
We can now calculate the 8 point DCT with 3 rotations (9 multiplications), the two

multiplications from equations (3.51) and (3.55) and another two multiplications of C4 with
(d12 + d56) and (s12− s56) which serve as an input for the rotations in equations (3.79) and
(3.90). The total number of operations sums up to 13 multiplications and 29 additions,
which will become much more obvious in section 3.3.2.2.

3.3.2.2 A graphical approach to the Ligtenberg-Vetterli-DCT

In this section, we will take a more intuitive approach to the computation of the Ligtenberg-
Vetterli DCT than in the preceeding chapter:

If an N point real DFT or a DCT* operation is simply considered a “black box” with N
input values and N output values, equations (3.22) and (3.25) can be described graphically
like in figure 3.1 for N = 8. Such a flowgraph is to be read from left to right, a filled dot
represents an addition of two values and an arrow represents a negation of a value 5. The

5A hollow dot represents the reuse of a value for more than one following operation and thus is not really
an operation that contributes to computational complexity.

32

3.3.2.2. A GRAPHICAL APPROACH TO THE LIGTENBERG-VETTERLI-DCT

f(0)

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

f(7)

ℜ()F(0)

ℜ()F(1)

ℜ()F(2)

ℑ()F(1)

ℜ()F(4)

ℜ()F(3)

ℑ()F(2)

ℑ()F(1)

4 pt.DFT

2 pt.DCT*

2 pt.DCT*

f'(0)

f'(1)

f'(2)

f'(3)

ℜ()F'(0)

ℜ()F'(1)

ℜ()F'(2)

ℑ()F'(1)

f''(0)

f''(1)

F*''(0)

F*''(1)

f'(0)

f'(1)

F*'(0)

F*'(1)

~

~

~

~

Figure 3.1: A graphical description of an 8 point real DFT

33

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

f(0)

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

f(7)

8 pt.DFT

Rot

Rot

Rot

2π
16

π
16

3π
16

C4

F*(0)

F*(1)

F*(2)

F*(3)

F*(4)

F*(5)

F*(6)

F*(7)

ℜ{ }F''(0)

ℜ{ }F''(1)

ℜ{ }F''(2)

ℜ{ }F''(3)

ℜ{ }F''(4)

ℑ{ }F''(1)

ℑ{ }F''(2)

ℑ{ }F''(3)

f''(0)

f''(1)

f''(2)

f''(3)

f''(4)

f''(5)

f''(6)

f''(7)

~

~

~

~

~

~

~

~

Figure 3.2: A graphical description of an 8 point DCT*

astute reader might object at this point that an N-point DFT should yield an N-point real
part and an N-point imaginary part, but it can be easily shown, that for a real input signal
function the Fourier Transform yields an even function for its real part and an odd function
for its imaginary part. Therefore

={F (0)} = sin-DFT(0, N, f) = 0 (3.91)

and

={F (N/2)} = sin-DFT(N/2, N, f) = 0 (3.92)

and

={F (u)} = sin-DFT(u, N, f) = -sin-DFT(N − u, N, f) = −={X(N − u)} . (3.93)

Similarly, for the real part, we can find

<{F (u)} = cos-DFT(u, N, f) = cos-DFT(N − u, N, f) = <{F (N − u)} . (3.94)

This reduces the total number of distinct and nonzero values of the N-point real DFT to N
values.

The computation of a DCT* from a DFT with rotation operations, as expressed in
equation (3.28), can be described graphically like in figure 3.2 for N = 8. In this flowgraph,
a box labeled with Rotnπ

16 denotes a rotation operation of the two input values as in equation

34

3.3.2.2. A GRAPHICAL APPROACH TO THE LIGTENBERG-VETTERLI-DCT

f(0)

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

f(7)

2 ·F (0)

2 · F (3)

2 ·F (4)

2 ·F (2)

2 ·F (6)

2 ·F (1)

2 ·F (7)

2 · F (5)

C4

C4

C4

C4 Rot

Rot

Rot
2 π
1 6

π
1 6

3 π
1 6

~

~

~

~

~

~

~

~

Figure 3.3: A combination of figures 3.1 and 3.2 to derive the DCT from the DCT*

(3.28) with a rotation angle of nπ/16. A box labeled C4 represents a multiplication with
C4 = 1/

√
2. In order to not confuse the reader, the output vector of the DCT* in figure

3.2 is denoted F̃ ∗(0) . . . F̃ ∗(7). If the two figures 3.1 and 3.2 are cleverly combined, such
that the black box labeled “8-pt. DFT” in figure 3.2 is replaced by the complete flowgraph
in figure 3.1, it is very easy to derive a flowgraph for the DCT* and finally, for the DCT,
like in figure (3.3). Note that we have to add an additional multiplication with C4 for
S(0) in order to derive the DCT from the DCT*. From figure (3.3), some optimization
in the number of required negations leads to the flowgraph in figure 3.4. As can be easily
seen from the flowgraph in figure 3.4, the computational complexity of the Ligtenberg-
Vetterli-DCT sums up to a total of 13 multiplications and 29 additions. Note that one
rotation takes 3 multiplications and 3 additions. The output of the flowgraph is 2 times
the value of the DCT coefficients, but the required division by 2 can easily be done by a
right shift operation which is negligible in computation costs, compared to an addition or a
multiplication. In figure 3.4 the boxes for the rotation operation get additional designators
where a minus sign means a negation of the input value. Such a negation of a rotation’s
input vector does not contribute to computational complexity, since it can be absorbed
into the precalculated constants of the rotation operation. Ligtenberg and Vetterli actually
sacrificed some computational complexity for the sake of a simpler design of their chip.
Figure 3.5 shows the flowgraph for their final design where one “butterfly”-operation (2
additions) in the third stage and the two multiplications by 1/

√
2 in the last stage are

replaced by a single rotation with a rotation angle of 4π/16 (three multiplications, three

35

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

f(0)

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

f(7)

2·F(0)

2·F(3)

2·F(4)

2·F(2)

2·F(6)

2·F(1)

2·F(7)

2·F(5)

C4

C4

C4

C4

+

-

+

+

+

+

Rot

Rot

Rot
− 6 π

16

π
16

3π
16

~

~

~

~

~

~

~

~

Figure 3.4: Flowgraph for the Ligtenberg-Vetterli Fast DCT

36

3.3.2.2. A GRAPHICAL APPROACH TO THE LIGTENBERG-VETTERLI-DCT

f(0)

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

f(7)

2·F(0)

2·F(3)

2·F(4)

2·F(2)

2·F(6)

2·F(1)

2·F(7)

2·F(5)

C4

C4

+

-

+

+

+

+

Rot

Rot

Rot
− 6 π

16

π
16

3π
16

+

+

Rot
4π
16

~

~

~

~

~

~

~

~

Figure 3.5: Hardware implementation of the Ligtenberg-Vetterli Fast DCT

37

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

f(0)

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

f(7)

2

2

Rot
− 3 π

1 6

Rot
− π
1 6

2 · R o t
− 6 π

1 6

2· 2 ·F(0)
~

2· 2 ·F(4)
~

2· 2 ·F(2)
~

2· 2 ·F(6)
~

2· 2 ·F(7)
~

2· 2 ·F(3)
~

2· 2 ·F(5)
~

2· 2 ·F(1)
~

Figure 3.6: Flowgraph for the Loeffler-Ligtenberg-Moschytz Fast DCT

additions). Note that a software implementation of their algorithm should preferrably use
the flowgraph in figure 3.4 instead of the flowgraph in figure 3.5.

3.3.3 The Loeffler-Ligtenberg-Moschytz-DCT

In [4], Loeffler et al. present an 8-point DCT algorithm that needs only 11 multiplications
and 29 additions. Figure 3.6 shows the flowgraph of this algorithm. This algorithm uses
the same kind of rotation as in equations (3.65) and (3.66), denoted by a box labeled with
RotΘ, with Θ being the rotation angle. The rotation in the third stage with a rotation
angle of −6π

16 is additionally scaled by
√

2, therefore it is labeled
√

2Rot−6π
16 . Note that

this scaling can be absorbed into the constants of the rotation operation and therefore does
not contribute to computational complexity. The output of this algorithm is scaled to 2

√
2

times the DCT coefficients of the input vector, but after a 2D DCT with a total scaling of
4
√

2
√

2, this can easily be reverted by a single right shift operation for each coefficient.

The Loeffler-Ligtenberg-Moschytz Fast DCT can now be written as a matrix-vector

38

3.3.3. THE LOEFFLER-LIGTENBERG-MOSCHYTZ-DCT

product:

F̃ (0)
F̃ (1)
F̃ (2)
F̃ (3)
F̃ (4)
F̃ (5)
F̃ (6)
F̃ (7)

=

1
2
√

2
·

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

·

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 1
0 0 0 0 0

√
2 0 0

0 0 0 0 0 0
√

2 0
0 0 0 0 1 0 0 1

·

1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0

√
2C6

√
2S6 0 0 0 0

0 0 −
√

2S6

√
2C6 0 0 0 0

0 0 0 0 1 0 1 0
0 0 0 0 0 −1 0 1
0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 1

·

1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 1 −1 0 0 0 0 0
1 0 0 −1 0 0 0 0
0 0 0 0 C3 0 0 S3

0 0 0 0 0 C1 S1 0
0 0 0 0 0 −S1 C1 0
0 0 0 0 −S3 0 0 C3

·

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 −1 0 0 0
0 0 1 0 0 −1 0 0
0 1 0 0 0 0 −1 0
1 0 0 0 0 0 0 −1

·

f(0)
f(1)
f(2)
f(3)
f(4)
f(5)
f(6)
f(7)

(3.95)

In [4], Loeffler et al. show, that algorithms like the Ligtenberg-Vetterli-DCT, which
allow the parallel execution of multiplications within one stage, will always take at least 12
multiplications, whereas their own algorithm belongs to a class of algorithms that uses a
cascaded multiplication in one stage but therefore needs one multiplication less. Note that
in [4] the scaled rotation in stage 3 of figure 1 is wrong. It should read

√
2 c6 instead of√

2 c1. Note also, that Loeffler, Ligtenberg and Moschytz omitted a scaling factor of
√

2 in
all constants used in figure 8 in [4], section 4.3.

In [15], an excellent introduction into this algorithm and how to translate it into source
code, along with performance figures for different DCT implementations, can be found. The
C source code that accompanies this article is available electronically from the website of
Dr. Dobb’s Journal (http://www.ddj.com).

39

http://www.ddj.com

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

3.3.4 The Inverse Loeffler-Ligtenberg-Moschytz-DCT

The Inverse Loeffler-Ligtenberg-Moschytz-DCT can easily be derived by simply reversing
the order of matrices in equation (3.95) and inverting the matrices as well. The Inverse
Loeffler-Ligtenberg-Moschytz-DCT can then be given as:

f(0)
f(1)
f(2)
f(3)
f(4)
f(5)
f(6)
f(7)

=

1
2
√

2
·

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 −1 0 0 0
0 0 1 0 0 −1 0 0
0 1 0 0 0 0 −1 0
1 0 0 0 0 0 0 −1

·

1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 1 −1 0 0 0 0 0
1 0 0 −1 0 0 0 0
0 0 0 0 C3 0 0 −S3

0 0 0 0 0 C1 −S1 0
0 0 0 0 0 S1 C1 0
0 0 0 0 S3 0 0 C3

·

1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0

√
2C6 −

√
2S6 0 0 0 0

0 0
√

2S6

√
2C6 0 0 0 0

0 0 0 0 1 0 1 0
0 0 0 0 0 −1 0 1
0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 1

·

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 1
0 0 0 0 0

√
2 0 0

0 0 0 0 0 0
√

2 0
0 0 0 0 1 0 0 1

·

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0

·

F̃ (0)
F̃ (1)
F̃ (2)
F̃ (3)
F̃ (4)
F̃ (5)
F̃ (6)
F̃ (7)

(3.96)

From equation (3.96) it is very easy to derive a a flowgraph which is depicted in figure 3.7.
Notice that the rotations simply changed their signs and the stages of the algorithm have
just been mirrored horizontally.

40

3.3.4. THE INVERSE LOEFFLER-LIGTENBERG-MOSCHYTZ-DCT

F(0)

F(4)

F(2)

F(6)

F(7)

F(3)

F(5)

F(1)

2

2

Rot
3 π
1 6

Rot
π

1 6

2 · R o t
6 π
1 6

2 · 2 · f (0)

2 · 2 · f (1)

2 · 2 · f (2)

2 · 2 · f (3)

2 · 2 · f (4)

2 · 2 · f (5)

2 · 2 · f (6)

2 · 2 · f (7)

~

~

~

~

~

~

~

~

Figure 3.7: Inverse Loeffler-Ligtenberg-Moschytz Fast DCT

41

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

3.3.5 The Winograd 16-point “small-N” DFT

In [34], Shmuel Winograd presented his research work at the IBM Thomas J. Watson
Research Center on the calculation of Fourier Transforms of arbitrary lengths6. His idea
was to break up the sample length N of the Fourier Transform into its prime factors and
calculate and combine DFTs of the size of the prime factors thus achieving a computational
complexity of O(N).7 For this purpose, Winograd derived the so-called “small-N” DFTs
of the prime sizes 2, 3, 5, 7, and for reasons of convenience, the “small-N” DFTs of the
composite sizes 4, 8, 9 and 16. Applying the results from section 3.2.3 to the 16-point
Winograd “small-N DFT” leads directly to the Arai-Agui-Nakajima DCT which will be
covered in section 3.3.6. A general introduction into the Winograd DFT can also be found
in [27].

The DFT from equation (3.29)8 can be written as a matrix-vector product in the fol-
lowing form:

F (0)
F (1)
F (2)

...
F (N − 1)

 = M ·

f(0)
f(1)
f(2)

...
f(N − 1)

 (3.97)

For N = 16 and W = e−jπ/8 the matrix M is defined as:

M =

W 0 W 0 W 0 W 0 W 0 W 0 W 0 W 0 W 0 W 0 W 0 W 0 W 0 W 0 W 0 W 0

W 0 W 1 W 2 W 3 W 4 W 5 W 6 W 7 −W 0 −W 1 −W 2 −W 3 −W 4 −W 5 −W 6 −W 7

W 0 W 2 W 4 W 6 −W 0 −W 2 −W 4 −W 6 W 0 W 2 W 4 W 6 −W 0 −W 2 −W 4 −W 6

W 0 W 3 W 6 −W 1 −W 4 −W 7 W 2 W 5 −W 0 −W 3 −W 6 W 1 W 4 W 7 −W 2 −W 5

W 0 W 4 −W 0 −W 4 W 0 W 4 −W 0 −W 4 W 0 W 4 −W 0 −W 4 W 0 W 4 −W 0 −W 4

W 0 W 5 −W 2 −W 7 W 4 −W 1 −W 6 W 3 −W 0 −W 5 W 2 W 7 −W 4 W 1 W 6 −W 3

W 0 W 6 −W 4 W 2 −W 0 −W 6 W 4 −W 2 W 0 W 6 −W 4 W 2 −W 0 −W 6 W 4 −W 2

W 0 W 7 −W 6 W 5 −W 4 W 3 −W 2 W 1 −W 0 −W 7 W 6 −W 5 W 4 −W 3 W 2 −W 1

W 0 −W 0 W 0 −W 0 W 0 −W 0 W 0 −W 0 W 0 −W 0 W 0 −W 0 W 0 −W 0 W 0 −W 0

W 0 −W 1 W 2 −W 3 W 4 −W 5 W 6 −W 7 −W 0 W 1 −W 2 W 3 −W 4 W 5 −W 6 W 7

W 0 −W 2 W 4 −W 6 −W 0 W 2 −W 4 W 6 W 0 −W 2 W 4 −W 6 −W 0 W 2 −W 4 W 6

W 0 −W 3 W 6 W 1 −W 4 W 7 W 2 −W 5 −W 0 W 3 −W 6 −W 1 W 4 −W 7 −W 2 W 5

W 0 −W 4 −W 0 W 4 W 0 −W 4 −W 0 W 4 W 0 −W 4 −W 0 W 4 W 0 −W 4 −W 0 W 4

W 0 −W 5 −W 2 W 7 W 4 W 1 −W 6 −W 3 −W 0 W 5 W 2 −W 7 −W 4 −W 1 W 6 W 3

W 0 −W 6 −W 4 −W 2 −W 0 W 6 W 4 W 2 W 0 −W 6 −W 4 −W 2 −W 0 W 6 W 4 W 2

W 0 −W 7 −W 6 −W 5 −W 4 −W 3 −W 2 −W 1 −W 0 W 7 W 6 W 5 W 4 W 3 W 2 W 1

(3.98)

We will now index the rows of M in equation (3.98) from 0 to 15. Let P1 be the permutation
matrix reordering the rows of the matrix in (3.98) as follows: 0, 2, 4, 6, 8, 10, 12, 14, 1, 3,
5, 7, 9, 11, 13, 15. Let In denote the n × n identity matrix and define R1 = L ⊗ I8 with

6The classic Cooley-Tukey algorithm requires the number of samples to be a power of two.
7Cooley-Tukey style DFTs have a computational complexity of O(N log N).
8Note that in both [34] and [27], the Fourier Transform is defined as F (u) =

∑K−1
n=0 f(n)W un

K , u =

0, . . . , K−1 with WK = ej 2π
K , therefore the sign of the imaginary part must be reversed when applying their

results.

42

3.3.5. THE WINOGRAD 16-POINT “SMALL-N” DFT

L =
(

1 1
1 −1

)
.9 M can then be written as follows:

M = P1 ·

W 0 W 0 W 0 W 0 W 0 W 0 W 0 W 0 0 0 0 0 0 0 0 0
W 0 W 2 W 4 W 6 −W 0 −W 2 −W 4 −W 6 0 0 0 0 0 0 0 0
W 0 W 4 −W 0 −W 4 W 0 W 4 −W 0 −W 4 0 0 0 0 0 0 0 0
W 0 W 6 −W 4 W 2 −W 0 −W 6 W 4 −W 2 0 0 0 0 0 0 0 0
W 0 −W 0 W 0 −W 0 W 0 −W 0 W 0 −W 0 0 0 0 0 0 0 0 0
W 0 −W 2 W 4 −W 6 −W 0 W 2 −W 4 W 6 0 0 0 0 0 0 0 0
W 0 −W 4 −W 0 W 4 W 0 −W 4 −W 0 W 4 0 0 0 0 0 0 0 0
W 0 −W 6 −W 4 −W 2 −W 0 W 6 W 4 W 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 W 0 W 1 W 2 W 3 W 4 W 5 W 6 W 7

0 0 0 0 0 0 0 0 W 0 W 3 W 6 −W 1 −W 4 −W 7 W 2 W 5

0 0 0 0 0 0 0 0 W 0 W 5 −W 2 −W 7 W 4 −W 1 −W 6 W 3

0 0 0 0 0 0 0 0 W 0 W 7 −W 6 W 5 −W 4 W 3 −W 2 W 1

0 0 0 0 0 0 0 0 W 0 −W 1 W 2 −W 3 W 4 −W 5 W 6 −W 7

0 0 0 0 0 0 0 0 W 0 −W 3 W 6 W 1 −W 4 W 7 W 2 −W 5

0 0 0 0 0 0 0 0 W 0 −W 5 −W 2 W 7 W 4 W 1 −W 6 −W 3

0 0 0 0 0 0 0 0 W 0 −W 7 −W 6 −W 5 −W 4 −W 3 −W 2 −W 1

·R1

(3.99)

The permutation matrix P1 is defined as:

P1 =

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

(3.100)

9If A is the m × n matrix (ai,j) and B is the p × q matrix (bi,j), then the tensor product A ⊗ B is the
mp× nq matrix composed of the m× n blocks (ai,jB).

43

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

The Matrix R1 = L⊗ I8 is defined as:

R1 =

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1

(3.101)

We will now reorder the first eight rows of the matrix in equation (3.99). Let P2 be the
permutation matrix reordering the first eight rows of the matrix in (3.99) as follows: 0, 2,
4, 6, 1, 3, 5, 7. We define the matrix R2 which is a 16× 16 identity matrix with the upper
left 8× 8 block replaced by L⊗ I4. The matrix M can then be written as follows:

M = P1 · P2

·

W 0 W 0 W 0 W 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W 0 W 4 −W 0 −W 4 0 0 0 0 0 0 0 0 0 0 0 0
W 0 −W 0 W 0 −W 0 0 0 0 0 0 0 0 0 0 0 0 0
W 0 −W 4 −W 0 W 4 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 W 0 W 2 W 4 W 6 0 0 0 0 0 0 0 0
0 0 0 0 W 0 W 6 −W 4 W 2 0 0 0 0 0 0 0 0
0 0 0 0 W 0 −W 2 W 4 −W 6 0 0 0 0 0 0 0 0
0 0 0 0 W 0 −W 6 −W 4 −W 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 W 0 W 1 W 2 W 3 W 4 W 5 W 6 W 7

0 0 0 0 0 0 0 0 W 0 W 3 W 6 −W 1 −W 4 −W 7 W 2 W 5

0 0 0 0 0 0 0 0 W 0 W 5 −W 2 −W 7 W 4 −W 1 −W 6 W 3

0 0 0 0 0 0 0 0 W 0 W 7 −W 6 W 5 −W 4 W 3 −W 2 W 1

0 0 0 0 0 0 0 0 W 0 −W 1 W 2 −W 3 W 4 −W 5 W 6 −W 7

0 0 0 0 0 0 0 0 W 0 −W 3 W 6 W 1 −W 4 W 7 W 2 −W 5

0 0 0 0 0 0 0 0 W 0 −W 5 −W 2 W 7 W 4 W 1 −W 6 −W 3

0 0 0 0 0 0 0 0 W 0 −W 7 −W 6 −W 5 −W 4 −W 3 −W 2 −W 1

· R2 ·R1 (3.102)

The permutation matrix P2 is defined as:

P2 =

1 0 0 0 0 0 0 0 · · · 0
0 0 0 0 1 0 0 0 · · · 0
0 1 0 0 0 0 0 0 · · · 0
0 0 0 0 0 1 0 0 · · · 0
0 0 1 0 0 0 0 0 · · · 0
0 0 0 0 0 0 1 0 · · · 0
0 0 0 1 0 0 0 0 · · · 0
0 0 0 0 0 0 0 1 · · · 0
...

...
...

...
...

...
...

...
. . .

0 0 0 0 0 0 0 0 1

(3.103)

44

3.3.5. THE WINOGRAD 16-POINT “SMALL-N” DFT

The Matrix R2 is defined as:

R2 =

1 0 0 0 1 0 0 0 0 · · · 0
0 1 0 0 0 1 0 0 0 · · · 0
0 0 1 0 0 0 1 0 0 · · · 0
0 0 0 1 0 0 0 1 0 · · · 0
1 0 0 0 −1 0 0 0 0 · · · 0
0 1 0 0 0 −1 0 0 0 · · · 0
0 0 1 0 0 0 −1 0 0 · · · 0
0 0 0 1 0 0 0 −1 0 · · · 0
0 0 0 0 0 0 0 0 1 · · · 0
...

...
...

...
...

...
...

...
...

. . .
0 0 0 0 0 0 0 0 0 1

(3.104)

For reasons of notational simplicity, we define a shortcut for the lower right half of the
matrix in equations (3.99) and (3.102):

G8 =

W 0 W 1 W 2 W 3 W 4 W 5 W 6 W 7

W 0 W 3 W 6 −W 1 −W 4 −W 7 W 2 W 5

W 0 W 5 −W 2 −W 7 W 4 −W 1 −W 6 W 3

W 0 W 7 −W 6 W 5 −W 4 W 3 −W 2 W 1

W 0 −W 1 W 2 −W 3 W 4 −W 5 W 6 −W 7

W 0 −W 3 W 6 W 1 −W 4 W 7 W 2 −W 5

W 0 −W 5 −W 2 W 7 W 4 W 1 −W 6 −W 3

W 0 −W 7 −W 6 −W 5 −W 4 −W 3 −W 2 −W 1

(3.105)

We will now reorder the first four rows of the matrix in equation (3.102). Let P3 be the
permutation matrix reordering the first four rows of the matrix in equation (3.102) as
follows: 0, 2, 1, 3. We define the matrix R3 which is a 16 × 16 identity matrix with the
upper left 4× 4 block replaced by L⊗ I2. The matrix M can then be written as follows:

M = P1 · P2 · P3 ·

1 1 0 0 0 0 0 0 0 ··· 0
1 −1 0 0 0 0 0 0 0 ··· 0
0 0 1 −j 0 0 0 0 0 ··· 0
0 0 1 j 0 0 0 0 0 ··· 0

0 0 0 0 1 1√
2
(1−j) −j − 1√

2
(1+j) 0 ··· 0

0 0 0 0 1 − 1√
2
(1+j) j 1√

2
(1−j) 0 ··· 0

0 0 0 0 1 1√
2
(j−1) −j 1√

2
(1+j) 0 ··· 0

0 0 0 0 1 1√
2
(1+j) j 1√

2
(j−1) 0 ··· 0

...
...

...
...

...
...

...
... G8

0 0 0 0 0 0 0 0

·R3 ·R2 ·R1 (3.106)

The permutation matrix P3 is defined as:

P3 =

1 0 0 0 · · · 0
0 0 1 0 · · · 0
0 1 0 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

0 0 0 0 1

(3.107)

45

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

The Matrix R3 = L⊗ I2 is defined as:

R3 =

1 0 1 0 0 · · · 0
0 1 0 1 0 · · · 0
1 0 −1 0 0 · · · 0
0 1 0 −1 0 · · · 0
0 0 0 0 1 · · · 0
...

...
...

...
...

. . .
0 0 0 0 0 1

(3.108)

In order to diagonalise the upper left 2×2 block in equation (3.106) we use matrix R4 which
is a 16× 16 identity matrix with the upper left 2× 2 block replaced by L:

R4 =

1 1 0 · · · 0
1 −1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
0 0 0 1

 (3.109)

The product P1 · P2 · P3 of all permutation matrices can now be combined into one single
permutation matrix:

P = P1 · P2 · P3 =

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

(3.110)

Again, we define a shortcut:

G4 =

1 1√

2
(1− j) −j − 1√

2
(1 + j)

1 − 1√
2
(1 + j) j 1√

2
(1− j)

1 1√
2
(j − 1) −j 1√

2
(1 + j)

1 1√
2
(1 + j) j 1√

2
(j − 1)

 (3.111)

46

3.3.5. THE WINOGRAD 16-POINT “SMALL-N” DFT

Now matrix M can be written as follows:

M = P ·

1 0 0 0 0 · · · 0
0 1 0 0 0 · · · 0
0 0 1 −j 0 · · · 0
0 0 1 j 0 · · · 0
0 0 0 0 G4
...

...
...

... G8

0 0 0 0

·R4 ·R3 ·R2 ·R1 (3.112)

We will now look at the matrices G4 and G8 separately: Matrix G4 can be factorized as
follows:

G4 =

1 1√

2
(1− j) −j − 1√

2
(1 + j)

1 − 1√
2
(1 + j) j 1√

2
(1− j)

1 1√
2
(j − 1) −j 1√

2
(1 + j)

1 1√
2
(1 + j) j 1√

2
(j − 1)

 (3.113)

=

1 0 1 0
1 0 −1 0
0 1 0 1
0 1 0 −1

 ·

1 0 1 0
1 0 −1 0
0 1 0 1
0 1 0 −1

 ·

1 0 0 0
0 0 −j 0
0 − 1√

2
j 0 0

0 0 0 1√
2

 ·

1 0 0 0
0 1 0 1
0 0 1 0
0 1 0 −1

With γ = π
8 , matrix G8 from equation (3.105) can be factorized as follows:

G8 =
1 cos γ−j sin γ cos 2γ−j sin 2γ cos 3γ−j sin 3γ −j − cos 3γ−j sin 3γ − cos 2γ−j sin 2γ − cos γ−j sin γ
1 cos 3γ−j sin 3γ − cos 2γ−j sin 2γ − cos γ+j sin γ j cos γ+j sin γ cos 2γ−j sin 2γ − cos 3γ−j sin 3γ
1 − cos 3γ−j sin 3γ − cos 2γ+j sin 2γ cos γ+j sin γ −j − cos γ+j sin γ cos 2γ+j sin 2γ cos 3γ−j sin 3γ
1 − cos γ−j sin γ cos 2γ+j sin 2γ − cos 3γ−j sin 3γ j cos 3γ−j sin 3γ − cos 2γ+j sin 2γ cos γ−j sin γ
1 − cos γ+j sin γ cos 2γ−j sin 2γ − cos 3γ+j sin 3γ −j cos 3γ+j sin 3γ − cos 2γ−j sin 2γ cos γ+j sin γ
1 − cos 3γ+j sin 3γ − cos 2γ−j sin 2γ cos γ−j sin γ j − cos γ−j sin γ cos 2γ−j sin 2γ cos 3γ+j sin 3γ
1 cos 3γ+j sin 3γ − cos 2γ+j sin 2γ − cos γ−j sin γ −j cos γ−j sin γ cos 2γ+j sin 2γ − cos 3γ+j sin 3γ
1 cos γ+j sin γ cos 2γ+j sin 2γ cos 3γ+j sin 3γ j − cos 3γ+j sin 3γ − cos 2γ+j sin 2γ − cos γ+j sin γ

= T1 · T2 · T3 · T4 · T5 · T6 · T7

(3.114)

The matrices T1, T2, T3, T4, T5, T6 and T7 are as follows:

T1 =

1 0 0 0 1 0 0 0
0 0 1 0 0 0 −1 0
0 0 1 0 0 0 1 0
1 0 0 0 −1 0 0 0
0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 −1
0 0 0 1 0 0 0 1
0 1 0 0 0 −1 0 0

(3.115)

47

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

T2 =

1 0 0 0 1 0 0 0
1 0 0 0 −1 0 0 0
0 1 0 0 0 1 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 1 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 −1

(3.116)

T3 =

1 0 0 1 0 0 0 0 0 0
1 0 0 −1 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 0 −1 0 0 0
0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 0 1

(3.117)

T4 =

1 0 0 0 0 0 0 0 0 0
0 −j 0 0 0 0 0 0 0 0
0 0 −j sin 2γ 0 0 0 0 0 0 0
0 0 0 cos 2γ 0 0 0 0 0 0
0 0 0 0 −j sin 3γ 0 0 0 0 0
0 0 0 0 0 j(sin 3γ−sin γ) 0 0 0 0
0 0 0 0 0 0 −j(sin 3γ+sin γ) 0 0 0
0 0 0 0 0 0 0 cos 3γ 0 0
0 0 0 0 0 0 0 0 cos γ+cos 3γ 0
0 0 0 0 0 0 0 0 0 cos 3γ−cos γ

(3.118)

T5 =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

(3.119)

T6 =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0
0 0 0 0 1 0 0 −1
0 0 0 0 0 1 −1 0

(3.120)

48

3.3.6. THE ARAI-AGUI-NAKAJIMA-DCT

T7 =

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

(3.121)

The number of operations that are needed to calculate the 16-point Winograd “small-
N” DFT can now easily be obtained by looking at the rows of the matrices in equations
(3.101), (3.104), (3.108), (3.109), (3.112), (3.113), (3.115), (3.116), (3.117), (3.119) and
(3.120): Each row that contains more than one ±1, is an addition, 74 in total. The number
of multiplications is 10, with 8 multiplications originating from equation (3.118) and 2
multiplications from equation (3.113).

3.3.6 The Arai-Agui-Nakajima-DCT

The Arai-Agui-Nakajima DCT ([35]) is the most efficient one-dimensional DCT known up
to now for DCT coefficients that need to be quantized10. This algorithm actually uses
13 multiplications, but eight of them can be absorbed into the quantization values11. This
means that for DCT applications such as JPEG, where a quantization needs to be calculated
anyway, moving 8 of the 13 multiplications into the quantization coefficients reduces this
algorithm’s complexity to only 5 multiplications and 29 additions for an 8 point DCT.
In this section we will derive the Arai-Agui-Nakajima-DCT from the Winograd 16-point
“small-N” DFT that was presented in section 3.3.5 and from the results of section 3.2.3,
where we used a 2N sample symmetrical input vector to derive an N-point DCT from a
2N-point DFT. In order to use only 8 samples as the input vector to the Winograd 16-point
“small-N” DFT and satisfy condition (3.30), we have to multiply matrix M in (3.112) with
another matrix U . Let M ′ be the resulting matrix from multiplying matrix M in equation
(3.112) with U :

M ′ = M · U (3.122)

10This is the case for the DCT in JPEG encoding and decoding, see section 2.2.2.
11For JPEG, the quantization values remain the same for each color component of an image during the

whole encoding or decoding process, see section 2.4.

49

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

Matrix U is defined as follows:

U =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

(3.123)

Matrix U can easily be absorbed into matrix R1 from equation (3.101) which leads to
matrix R′

1:

R′
1 = R1 · U = M ·

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 −1
0 1 0 0 0 0 −1 0
0 0 1 0 0 −1 0 0
0 0 0 1 −1 0 0 0
0 0 0 −1 1 0 0 0
0 0 −1 0 0 1 0 0
0 −1 0 0 0 0 1 0
−1 0 0 0 0 0 0 1

(3.124)

Now matrix M ′ can be written as follows (compare with equation (3.112)):

M ′ = P ·

1 0 0 0 0 · · · 0
0 1 0 0 0 · · · 0
0 0 1 −j 0 · · · 0
0 0 1 j 0 · · · 0
0 0 0 0 G4
...

...
...

... G8

0 0 0 0

·R4 ·R3 ·R2 ·R′

1 (3.125)

50

3.3.6. THE ARAI-AGUI-NAKAJIMA-DCT

From section 3.2.3 we know that another interesting property of applying a DFT on a real
and symmetrical input vector is the fact, that the imaginary part of the result vector is
zero. Since there are no multiplication paths in equation (3.125) that multiply a complex
term with another complex term, we can therefore simply disregard the imaginary part of
all terms from now on and replace them with zero.

The derivation of the Arai-Agui-Nakajima-DCT from the Winograd 16-point “small-N”
DFT can probably be best described by dividing the result vector into two parts, the first
part containing all even indices and the second part containing all the odd indices. By
looking at the permutation matrix P in equation (3.110), we find that the indices 0, 2, 4
and 6 are built from lines 0, 4, 2 and 5 in the matrix in equation (3.125), therefore only the
top left 8× 8 block is of any interest to us. From equation (3.125) we can now deduce the
following:

F (0)
F (2)
F (4)
F (6)

 =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ·

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 1√

2
0 − 1√

2

0 0 0 0 1 − 1√
2

0 1√
2

· R′
4 ·R′

3 ·R′
2 ·R′′

1 ·

f(0)
f(1)
f(2)

...
f(7)

= P ′ ·Q ·R′
4 ·R′

3 ·R′
2 ·R′′

1 ·

f(0)
f(1)
f(2)

...
f(7)

 (3.126)

The matrices P ′, Q and R′′
1 are defined as follows:

P ′ =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (3.127)

Q =

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 1√

2
0 − 1√

2

0 0 0 0 1 − 1√
2

0 1√
2

 (3.128)

51

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

R′′
1 =

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1

(3.129)

The matrices R′
2, R′

3 and R′
4 are simply the the top left 8× 8 blocks of the matrices R2, R3

and R4 from equations (3.104), (3.108) and (3.109):

R′
2 =

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1

(3.130)

R′
3 =

1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
1 0 −1 0 0 0 0 0
0 1 0 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

(3.131)

R′
4 =

1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

(3.132)

52

3.3.6. THE ARAI-AGUI-NAKAJIMA-DCT

It can be easily shown that matrix Q can be factorized as follows:

Q =

1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 −1

 ·

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1√

2

·

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 −1

 (3.133)

Our goal will now be to simplify matrices Q, R′′
1 , R′

2, R′
3 and R′

4 as much as possible, taking
advantage of the symmetry of the matrix that follows each of these matrices in the matrix
product in equation (3.126): Because rows 0 and 7 (as well as 1 and 6, 2 and 5, 3 and 4) in
matrix R′′

1 in equation are identical, R′
2 can be replaced by R′′

2 :

R′′
2 =

1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 1 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 −1 0 0 0 0
0 1 −1 0 0 0 0 0
0 −1 1 0 0 0 0 0
−1 0 0 1 0 0 0 0

(3.134)

Doing so, we can also replace the complete lower half of R′′
1 with zeroes.

Similarly, we can make use of the symmetry in R′′
2 in equation (3.134): Rows 0 and 3

are identical, also 1 and 2. Row 7 is just the inverse of row 4 and row 6 is the inverse of
row 5. Therefore, R′

3 can be replaced by R′′
3 :

R′′
3 =

1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 −1 0 0 0

(3.135)

Doing so, we can also replace rows 2, 3, 6 and 7 of R′′
2 with zeroes.

Exploiting the symmetries in R′′
3 (rows 0 and 1 are identical, rows 2 and 3, 4 and 7, 5

and 6 are just their own inverses), we can now replace R′
4 with R′′

4 :

R′′
4 =

2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 −1 0 0 0

(3.136)

53

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

Doing so, we can also replace rows 1, 3, 6 and 7 of R′′
3 with zeroes.

As a last optimization we make use of the symmetry in R′′
4 , where row 4 and 7 are their

inverses. We can then change row 5 of the rightmost matrix of the factorization in equation
(3.133) from (0 0 0 0 0 1 0 −1) to (0 0 0 0 1 1 0 0). Deleting columns with all zeroes and their
associated rows in their respective following matrix, we can now reduce the dimensions of
the matrices and calculate the even coefficients of the Arai-Agai-Nakajima Fast DCT as
follows:

F (0)
F (2)
F (4)
F (6)

 =

2 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ·

1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 −1

 ·

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1√

2

 ·

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1

(3.137)

·

1 1 0 0
1 −1 0 0
0 0 1 0
0 0 0 1

 ·

1 0 0 1
0 1 1 0
1 0 0 −1
0 1 −1 0

 ·

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0

 ·

f(0)
f(1)
f(2)

...
f(7)

From equation (3.137) we can now easily derive a flowgraph for the even coefficients of the
Arai-Agui-Nakajima Fast DCT as depicted in figure 3.8.

For the vector with the odd indices, we again look at the permutation matrix P in
equation (3.110). We find that the indices 1, 3, 5 and 7 are built from lines 8, 9, 10 and
11 in the matrix in equation (3.125), therefore only the bottom right 8× 8 block is of any
interest to us. Fortunately, the bottom right 8 × 8 block of the matrices R′

4, R′
3 and R′

2

are the 8 × 8 identity matrices, so we can disregard them. Therefore we can deduce the
following from equation (3.125):

F (1)
F (3)
F (5)
F (7)

 =

(
1 cos γ cos 2γ cos 3γ 0 − cos 3γ − cos 2γ −cosγ
1 cos 3γ − cos 2γ − cos γ 0 cos γ cos 2γ −cos3γ
1 − cos 3γ − cos 2γ cos γ 0 − cos γ cos 2γ cos3γ
1 − cos γ cos 2γ − cos 3γ 0 cos 3γ − cos 2γ cosγ

)
·R′′′

1 ·

f(0)
f(1)
f(2)

...
f(7)

= V ·R′′′
1 ·

f(0)
f(1)
f(2)

...
f(7)

 (3.138)

The matrix V is defined as:

V =

1 cos γ cos 2γ cos 3γ 0 − cos 3γ − cos 2γ −cosγ
1 cos 3γ − cos 2γ − cos γ 0 cos γ cos 2γ −cos3γ
1 − cos 3γ − cos 2γ cos γ 0 − cos γ cos 2γ cos3γ
1 − cos γ cos 2γ − cos 3γ 0 cos 3γ − cos 2γ cosγ

 (3.139)

54

3.3.6. THE ARAI-AGUI-NAKAJIMA-DCT

f(0)

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

f(7)

F(0)

F(4)

F(2)

F(6)

1
2

1
2

~

~

~

~

Figure 3.8: Flowgraph for the even coefficients of the Arai-Agui-Nakajima Fast DCT

55

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

Matrix R′′′
1 is simply the lower half of matrix R′

1 from equation (3.124):

R′′′
1 =

1 0 0 0 0 0 0 −1
0 1 0 0 0 0 −1 0
0 0 1 0 0 −1 0 0
0 0 0 1 −1 0 0 0
0 0 0 −1 1 0 0 0
0 0 −1 0 0 1 0 0
0 −1 0 0 0 0 1 0
−1 0 0 0 0 0 0 1

(3.140)

Matrix V can be factorized as follows:

V =

1 cos γ cos 2γ cos 3γ 0 − cos 3γ − cos 2γ −cosγ
1 cos 3γ − cos 2γ − cos γ 0 cos γ cos 2γ −cos3γ
1 − cos 3γ − cos 2γ cos γ 0 − cos γ cos 2γ cos3γ
1 − cos γ cos 2γ − cos 3γ 0 cos 3γ − cos 2γ cosγ

=

1 0 1 0
0 1 0 −1
0 1 0 1
1 0 −1 0

 ·

1 1 0 0 0
1 −1 0 0 0
0 0 1 1 0
0 0 1 0 1

·

1 0 0 0 0
0 cos 2γ 0 0 0
0 0 − cos 3γ 0 0
0 0 0 cos γ + cos 3γ 0
0 0 0 0 cos 3γ − cos γ

 ·

1 0 0 0 0
0 1 1 0 0
0 0 0 1 1
0 0 0 1 0
0 0 0 0 1

·

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 1 0 0 0 0 0 −1
0 0 0 −1 0 1 0 0

 (3.141)

If we now take advantage of the symmetry in matrix R′′′
1 , the right half of the last matrix

in equation (3.141) can be inverted and mirrored to the left half and the odd indices of the

56

3.3.6. THE ARAI-AGUI-NAKAJIMA-DCT

Arai-Agui-Nakajima Fast DCT can be computed as follows:
F (1)
F (3)
F (5)
F (7)

 =

1 0 1 0
0 1 0 −1
0 1 0 1
1 0 −1 0

 ·

1 1 0 0 0
1 −1 0 0 0
0 0 1 1 0
0 0 1 0 1

·

1 0 0 0 0
0 cos 2γ 0 0 0
0 0 − cos 3γ 0 0
0 0 0 cos γ + cos 3γ 0
0 0 0 0 cos 3γ − cos γ

·

1 0 0 0 0
0 1 1 0 0
0 0 0 1 1
0 0 0 1 0
0 0 0 0 1

 ·

1 0 0 0
0 0 1 0
0 1 0 0
1 1 0 0
0 0 −1 −1

·

1 0 0 0 0 0 0 −1
0 1 0 0 0 0 −1 0
0 0 1 0 0 −1 0 0
0 0 0 1 −1 0 0 0

f(0)
f(1)
f(2)

...
f(7)

(3.142)

From equation (3.142) we can now easily derive a flowgraph for the odd coefficients of the
Arai-Agui-Nakajima Fast DCT as depicted in figure 3.9. Figure 3.10 shows the complete
flowgraph as a combination of figure 3.8 and figure 3.9. From the flowgraph in figure 3.10,
which can also be found in [35], [22] and [15], we can now determine the computational
complexity of the Arai-Agui-Nakajima Fast DCT as consisting of 5 multiplications and 29
additions. Note however, that the scaling of the output vector in [15] (which is merely an
adaption of [22] with respect to the the Arai-Agui-Nakajima-DCT) is incorrect. The correct
values for the scaling factors mn of the Arai-Agui-Nakajima-DCT are:

mn = 4 · c(n) · cos
nπ

16
= 4 · c(n) · Cn , n = 0, . . . , 7 (3.143)

with c(n) defined according to equation (3.3) and Cn defined according to equation (3.38).
The factors a1, . . . , a5 are defined as follows:

a1 = a3 = C4 =
1√
2

a2 = cos
π

8
− cos

3π

8
=

√
1− 1√

2

a4 = cos
π

8
+ cos

3π

8
=

√
1 +

1√
2

a5 = cos
3π

8
=

1
2

√
2−

√
2 (3.144)

57

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

f(0)

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

f(7)

cos 3
- cos

1
 2

cos
+ cos 3

-cos 3

F(7)

F(5)

F(1)

F(3)

~

~

~

~

γ

γ

γ

γ
γ

Figure 3.9: Flowgraph for the odd coefficients of the Arai-Agui-Nakajima Fast DCT

58

3.3.6. THE ARAI-AGUI-NAKAJIMA-DCT

f(0)

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

f(7)

a1

a2

a3

a4

a5

m F(0)

m F(7)

m F(4)

m F(2)

m F(6)

m F(5)

m F(1)

m F(3)

0

4

2

6

5

1

7

3

~

~

~

~

~

~

~

~

Figure 3.10: Flowgraph for the Arai-Agui-Nakajima Fast DCT

59

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

With the help of the flowgraph in figure 3.10 and equations (3.137) and (3.142) the Arai-
Agui-Nakajima Fast DCT can be computed as follows:

F̃ (0)
F̃ (1)
F̃ (2)
F̃ (3)
F̃ (4)
F̃ (5)
F̃ (6)
F̃ (7)

=

1
2
√

2
0 0 0 0 0 0 0

0 1
4C1

0 0 0 0 0 0
0 0 1

4C2
0 0 0 0 0

0 0 0 1
4C3

0 0 0 0
0 0 0 0 1

2
√

2
0 0 0

0 0 0 0 0 1
4C5

0 0
0 0 0 0 0 0 1

4C6
0

0 0 0 0 0 0 0 1
4C7

·

1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0

·

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 1 −1 0
0 0 0 0 −1 0 0 1

·

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 −1 0 1

(3.145)

·

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1√

2
0 0 0 0 0

0 0 0 1 0 0 0 0
0 0 0 0 − cos π

8 0 − cos 3π
8 0

0 0 0 0 0 1√
2

0 0
0 0 0 0 − cos 3π

8 0 cos π
8 0

0 0 0 0 0 0 0 1

·

1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

·

1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 1 −1 0 0 0 0 0
1 0 0 −1 0 0 0 0
0 0 0 0 −1 −1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

·

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 −1 0 0 0
0 0 1 0 0 −1 0 0
0 1 0 0 0 0 −1 0
1 0 0 0 0 0 0 −1

·

f(0)
f(1)
f(2)
f(3)
f(4)
f(5)
f(6)
f(7)

Note that the first matrix in equation (3.145) is a diagonal matrix containing the scaling
values from equation (3.144). In a DCT application that uses quantization, such as JPEG,
this matrix would be absorbed into the quantization values. The matrix immediately fol-
lowing the diagonal scaling matrix is a permutation matrix that brings the outcome of
figure 3.10 into natural order. We will use the matrix-vector product representation of
the Arai-Agui-Nakajima Fast DCT from equation (3.145) in subsequent sections on a fast
two-dimensional DCT.

60

3.3.7. THE INVERSE ARAI-AGUI-NAKAJIMA-DCT

3.3.7 The Inverse Arai-Agui-Nakajima-DCT

From equation (3.145) it is now trivial to derive the inverse Arai-Agui-Nakajima Fast DCT:
Simply the order of all matrices in this equation needs to be inverted and all matrices
themselves as well:

f(0)
f(1)
f(2)
f(3)
f(4)
f(5)
f(6)
f(7)

=

1
8
·

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 −1 0 0 0
0 0 1 0 0 −1 0 0
0 1 0 0 0 0 −1 0
1 0 0 0 0 0 0 −1

·

1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 1 −1 0 0 0 0 0
1 0 0 −1 0 0 0 0
0 0 0 0 −1 −1 1 −1
0 0 0 0 0 1 −1 1
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 1

·

1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

·

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0

√
2 0 0 0 0 0

0 0 0 1 0 0 0 0
0 0 0 0 −2 cos π

8 0 −2 cos 3π
8 0

0 0 0 0 0
√

2 0 0
0 0 0 0 −2 cos 3π

8 0 2 cos π
8 0

0 0 0 0 0 0 0 1

·

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 −1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 1

·

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 −1
0 0 0 0 0 1 1 0
0 0 0 0 0 1 −1 0
0 0 0 0 1 0 0 1

·

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0

·

2
√

2 0 0 0 0 0 0 0
0 4C1 0 0 0 0 0 0
0 0 4C2 0 0 0 0 0
0 0 0 4C3 0 0 0 0
0 0 0 0 2

√
2 0 0 0

0 0 0 0 0 4C5 0 0
0 0 0 0 0 0 4C6 0
0 0 0 0 0 0 0 4C7

·

F̃ (0)
F̃ (1)
F̃ (2)
F̃ (3)
F̃ (4)
F̃ (5)
F̃ (6)
F̃ (7)

(3.146)

61

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

Notice that the lower right half of the second matrix in equation (3.146) can be factored as
follows:

−1 −1 1 −1
0 1 −1 1
0 0 1 −1
0 0 0 1

 =

−1 −1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ·

1 0 0 0
0 1 −1 0
0 0 1 0
0 0 0 1

 ·

1 0 0 0
0 1 0 0
0 0 1 −1
0 0 0 1

 (3.147)

If we now consider that the lower right half of the fourth matrix in equation (3.146)
contains a rotation of rows 4 and 6 of the following matrix which can be written as(

−2 cos π
8

−2 cos 3π
8

−2 cos 3π
8

2 cos π
8

)
=
(−1 1 0

1 0 1

)
·

(
2 cos π

8
0 0

0 2(cos π
8
−cos 3π

8) 0

0 0 −2(cos π
8
+cos 3π

8)

)
·
(

1 1
0 1
1 0

)
, we are able

to derive a flowgraph for the inverse Arai-Agui-Nakajima Fast DCT as depicted in figure
3.11.

4·C ·F(2)

4·C ·F(6)

4·C ·F(5)

4·C ·F(1)

4·C ·F(7)

4·C ·F(3)

2a1

2a4

2a3

2a2

2a6

8·f(0)

8·f(6)

8·f(1)

8·f(2)

8·f(3)

8·f(4)

8·f(5)

8·f(7)

2· 2·F(4)

2

6

5

1

7

3

2· 2·F(0)~

~

~

~

~

~

~

~

Figure 3.11: Flowgraph for the inverse Arai-Agui-Nakajima Fast DCT

Figure 3.11 uses a new constant besides from the ones in equation (3.144):

a6 = cos
π

8
(3.148)

62

3.4. FAST TWO-DIMENSIONAL DCTS

3.4 Fast two-dimensional DCTs

In this section we are going to develop a fast two-dimensional 8-point DCT from the Arai-
Agui-Nakajima DCT in section 3.3.6. We will show that the two-dimensional DCT is
actually the tensor product of the DCT matrix with itself. Therefore the tensor product
and its most important properties will first be covered in more detail.

3.4.1 The tensor product and its properties

In section 3.3.5 we already introduced the tensor product. A good introduction on this topic
can also be found in [13]. The tensor product is a binary matrix operator that provides a
mechanism for combining two matrices to form one single larger matrix. Let An1,n2 and
Bm1,m2 be two arbitrary matrices of dimension n1 × n2 and m1 ×m2, respectively:

An1,n2 =

a0,0 a0,1 . . . a0,n2−1

a1,0 a1,1 . . . a1,n2−1
...

...
...

an1−1,0 an1−1,1 . . . an1−1,n2−1

 (3.149)

Bm1,m2 =

b0,0 b0,1 . . . b0,m2−1

b1,0 b1,1 . . . b1,m2−1
...

...
...

bm1−1,0 bm1−1,1 . . . bm1−1,m2−1

 (3.150)

The tensor product C = A⊗B is defined as the n1m1 × n2m2 matrix given by:

C = An1,n2 ⊗Bm1,m2 =

a0,0 ·B a0,1 ·B . . . a0,n2−1 ·B
a1,0 ·B a1,1 ·B . . . a1,n2−1 ·B

...
...

...
an1−1,0 ·B an1−1,1 ·B . . . an1−1,n2−1 ·B

 (3.151)

This means that the tensor product of A and B is formed by replacing an arbitrary element
aij of A with the m1 ×m2 matrix aij ·B.

There are quite a few interesting properties of the tensor product, for instance, it is
associative:

A⊗ (B ⊗ C) = (A⊗B)⊗ C (3.152)

If the involved matrices are of appropriate dimension, the tensor product is also distributive
over matrix multiplication:

(A⊗B) · (C ⊗D) = AC ⊗BD (3.153)

Another property is the inversion property: If A and B are nonsingular matrices, so is
C = A⊗B and:

C−1 = (A⊗B)−1 = A−1 ⊗B−1 (3.154)

63

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

This means that if we want to calculate the inverse matrix of a large matrix C that can
be expressed as a tensor product, the inverse can be much more easily calculated from an
inversion of the factors A and B.

Another interesting property of the tensor product is the transposition property :

(A⊗B)t = At ⊗Bt (3.155)

The last property to be examined will be needed quite often in the following sections. It
allows us to reverse the order of operators in the tensor product with the help of permutation
matrices: In section 3.3.5 we used the permutation matrix that permuted the rows of a
vector or a matrix in the following order: 0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13,
15. This matrix is actually called a stride-by-2 matrix. Generally, a stride-by-s matrix

works like this: Let Xn =

(x0
x1

...
xn

)
be an n-point vector and let Pn,s denote the stride-by-

s permutation matrix with n = r · s. For the caculation of Yn = Pn,s · Xn, the first r
elements of Yn are obtained by starting at element x0 and selecting each sth element of Xn.
The next r elements are obtained in the same manner, but this time starting at x1. This
process is repeated s times in total and the vector Yn is built from the following elements:
x0, xs, x2s, . . . , x(r−1)s, x1, xs+1, x2s+1, . . . , x(r−1)s+1, . . . , xs−1, x2s−1, . . . , xrs−1. Now let As

and Br be any sqare matrices of order s and r, respectively. Then we can reverse the order
of the tensor product with a stride-by-s and a stride-by-r permutation matrix:

(As ⊗Br) = Pn,s · (Br ⊗As) · Pn,r (3.156)

3.4.2 The two-dimensional DCT as a tensor product

Let K8 be the DCT matrix that is built from the product of all matrices in equation (3.145)
such that equation (3.145) can be written as:

F̃ (0)
F̃ (1)
F̃ (2)
F̃ (3)
F̃ (4)
F̃ (5)
F̃ (6)
F̃ (7)

= K8 ·

f(0)
f(1)
f(2)
f(3)
f(4)
f(5)
f(6)
f(7)

(3.157)

For calculating a two-dimensional n-point DCT, we use an n × n input vector that is built
from appending all n rows together. We then apply a one-dimensional DCT individually
on each group of n points, which corresponds to calculating the row-wise DCT. Then we
permute the result vector such that all n first vector elements of each group are grouped
together, then all n second vector elements, and so on. On the resulting vector, again to each
group of n points, individual n-point DCTs are applied, which corresponds to calculating
the column-wise DCT. Finally, the elements of the result vector have to be permuted again
in the same way as between the first row-wise DCT and the column-wise DCT. For a two-
dimensional 8-point DCT this can now be written in the form of a matrix-vector product

64

3.4.2. THE TWO-DIMENSIONAL DCT AS A TENSOR PRODUCT

as follows:

F̃ (0, 0)
F̃ (0, 1)

...
F̃ (0, 7)
F̃ (1, 0)
F̃ (1, 1)

...
F̃ (1, 7)

...
F̃ (7, 0)
F̃ (7, 1)

...
F̃ (7, 7)

= P64,8 ·

K8 . . . 0

K8 . . .
...

K8

K8

K8

K8
... . . . K8

0 . . . K8

·P64,8 ·

K8 . . . 0

K8 . . .
...

K8

K8

K8

K8
... . . . K8

0 . . . K8

·

f(0, 0)
f(0, 1)

...
f(0, 7)
f(1, 0)
f(1, 1)

...
f(1, 7)

...
f(7, 0)
f(7, 1)

...
f(7, 7)

(3.158)

= P64,8 · (I8 ⊗K8) · P64,8 · (I8 ⊗K8) ·

f(0, 0)
f(0, 1)

...
f(0, 7)
f(1, 0)
f(1, 1)

...
f(1, 7)

...
f(7, 0)
f(7, 1)

...
f(7, 7)

65

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

Now, since (I8 ⊗K8) = P64,8 · (K8 ⊗ I8) · P64,8 and P64,8 · P64,8 = I8 we can write:

P64,8 · (I8 ⊗K8) · P64,8 · (I8 ⊗K8) = P64,8 · P64,8 · (K8 ⊗ I8) · P64,8 · P64,8 · (I8 ⊗K8) =
(K8 ⊗ I8) · (I8 ⊗K8) = (K8 · I8)⊗ (I8 ·K8) = K8 ⊗K8 (3.159)

With equation (3.159) we now get from equation (3.158):

F̃ (0, 0)
F̃ (0, 1)

...
F̃ (0, 7)
F̃ (1, 0)
F̃ (1, 1)

...
F̃ (1, 7)

...
F̃ (7, 0)
F̃ (7, 1)

...
F̃ (7, 7)

= (K8 ⊗K8)

f(0, 0)
f(0, 1)

...
f(0, 7)
f(1, 0)
f(1, 1)

...
f(1, 7)

...
f(7, 0)
f(7, 1)

...
f(7, 7)

(3.160)

This shows, that the matrix for the two-dimensional DCT can be built from applying the
tensor product of the one-dimensional DCT to itself.

3.4.3 Feig’s fast two-dimensional DCT

This section will deal with a true two-dimensional approach to the calculation of the 2D 8-
point DCT. It was published by E. Feig in 1990 ([8]). A good introduction into this algorithm
can also be found in [22] (1993) and in [9] (1992). Feig’s algorithm takes the Arai-Agui-
Nakajima DCT as the basis and achieves a computational complexity of 54 multiplications,
6 shift operations and 462 additions, whereas an Arai-Agui-Nakajima DCT in row-column
scheme would require 16× 5 = 80 multiplications and 16× 29 = 464 additions.

From section 3.4.2 we know, that the two-dimensional DCT can be expressed as the
tensor product of the one-dimensional DCT with itself (see equations (3.159) and (3.160)).
From equation (3.145) we also know, that the Arai-Agui-Nakajima DCT can be expressed
as a product of matrices with an 8-point input vector as follows:

F̃ (0)
F̃ (1)
F̃ (2)
F̃ (3)
F̃ (4)
F̃ (5)
F̃ (6)
F̃ (7)

= K8 ·

f(0)
f(1)
f(2)
f(3)
f(4)
f(5)
f(6)
f(7)

= DF · PF ·BF ·MF ·AF ·

f(0)
f(1)
f(2)
f(3)
f(4)
f(5)
f(6)
f(7)

(3.161)

66

3.4.3. FEIG’S FAST TWO-DIMENSIONAL DCT

The matrices DF , PF , BF , MF and AF are as follows (compare with equation(3.145)):

DF =

1
2
√

2
0 0 0 0 0 0 0

0 1
4C1

0 0 0 0 0 0
0 0 1

4C2
0 0 0 0 0

0 0 0 1
4C3

0 0 0 0
0 0 0 0 1

2
√

2
0 0 0

0 0 0 0 0 1
4C5

0 0
0 0 0 0 0 0 1

4C6
0

0 0 0 0 0 0 0 1
4C7

(3.162)

PF =

1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0

(3.163)

BF =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 1 −1 0
0 0 0 0 −1 0 0 1

·

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 −1 0 1

(3.164)

MF =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1√

2
0 0 0 0 0

0 0 0 1 0 0 0 0
0 0 0 0 − cos π

8 0 − cos 3π
8 0

0 0 0 0 0 1√
2

0 0
0 0 0 0 − cos 3π

8 0 cos π
8 0

0 0 0 0 0 0 0 1

(3.165)

67

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

f(0)

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

f(7)

Figure 3.12: Flowgraph for matrix AF

AF =

1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

·

1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 1 −1 0 0 0 0 0
1 0 0 −1 0 0 0 0
0 0 0 0 −1 −1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

·

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 −1 0 0 0
0 0 1 0 0 −1 0 0
0 1 0 0 0 0 −1 0
1 0 0 0 0 0 0 −1

(3.166)

Figures 3.12, 3.14 and 3.13 show the flowgraphs of matrices AF , BF and MF , respec-
tively. For figure 3.13, the values of a1, a2, a3, a4 and a5 are the ones from equation
(3.144).

The tensor product K8 ⊗K8 can be now written as:

K8 ⊗K8 = (DF · PF ·BF ·MF ·AF)⊗ (DF · PF ·BF ·MF ·AF) (3.167)

68

3.4.3. FEIG’S FAST TWO-DIMENSIONAL DCT

a1

a2

a3

a4

a5

Figure 3.13: Flowgraph for matrix MF

m F(0)

m F(7)

m F(4)

m F(2)

m F(6)

m F(5)

m F(1)

m F(3)

0

4

2

6

5

1

7

3

~

~

~

~

~

~

~

~

Figure 3.14: Flowgraph for matrix BF

69

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

From the distributive property of the tensor product we get:

K8 ⊗K8 = (DF ⊗DF) · ((PF ·BF ·MF ·AF)⊗ (PF ·BF ·MF ·AF)) (3.168)

With the shortcut K ′
8 = PF ·BF ·MF ·AF we can now write:

K8 ⊗K8 = (DF ⊗DF) · (K ′
8 ⊗K ′

8) (3.169)

The matrix (DF ⊗DF) is a diagonal matrix of dimension 64× 64, containing the 64 scaling
factors that can be absorbed into the quantization values. For practical reasons, in the
following we will rather deal with (K ′

8 ⊗ K ′
8) than (K8 ⊗ K8), keeping in mind, that the

result vector of (K ′
8 ⊗K ′

8) needs to be scaled by (DF ⊗DF).
Again using the distributive property of tensor products, we can express (K ′

8 ⊗K ′
8) as

follows:

(K ′
8 ⊗K ′

8) = (PF ⊗ PF) · (BF ⊗BF) · (MF ⊗MF) · (AF ⊗AF) (3.170)

The matrix (PF ⊗ PF) in equation (3.170) is simply a 64 × 64 permutation matrix that
reorders the output to natural order, but does not contribute to computational complexity.
For the other factors in equation (3.170) we can now choose whether we want to apply a row-
column scheme, or whether we want to calculate the tensor product to form a 64×64 matrix.
Feig’s approach was to use a row-column scheme for the tensor products (BF ⊗ BF) and
(AF ⊗AF), which contain merely additions, but to calculate the tensor product (MF ⊗MF),
which contains all the multiplications.

The tensor product (AF ⊗AF) can be written as follows:

(AF ⊗AF) = (I8 ·AF)⊗ (AF · I8) = (I8 ⊗AF) · (AF ⊗ I8) (3.171)

Using equation (3.156), this can be written as follows:

(AF ⊗AF) = (I8 ⊗AF) · P64,8 · (I8 ⊗AF) · P64,8 (3.172)

Matrix P64,8 simply permutes the 64 elements of the input vector, and (I8 ⊗ AF) can be
expanded to the following 64× 64 matrix:

(I8 ⊗AF) =

AF 0 0 0 0 0 0 0
0 AF 0 0 0 0 0 0
0 0 AF 0 0 0 0 0
0 0 0 AF 0 0 0 0
0 0 0 0 AF 0 0 0
0 0 0 0 0 AF 0 0
0 0 0 0 0 0 AF 0
0 0 0 0 0 0 0 AF

(3.173)

Equations (3.172) and (3.173) are illustrated in the form of a flowgraph in figure 3.15.
Note that this flowgraph uses a hollow square at line ends to represent an 8-element vector
input and output of an 8×8 matrix. The boxes labeled AF and P64,8 represent the respective
matrices. Also, the initial permutation with the stride-by-8 permutation matrix is already
represented by the choice of the input vectors to the left row of the matrices labeled with
AF .

70

3.4.3. FEIG’S FAST TWO-DIMENSIONAL DCT

f(0,0)
f(0,1)

f(0,7)

····

f(1,0)
f(1,1)

f(1,7)

····

f(2,0)
f(2,1)

f(2,7)

····

f(3,0)
f(3,1)

f(3,7)

····

f(4,0)
f(4,1)

f(4,7)

····

f(5,0)
f(5,1)

f(5,7)

····

f(6,0)
f(6,1)

f(6,7)

····

f(7,0)
f(7,1)

f(7,7)

····

P
64,8

A F

A F

A F

A F

A F

A F

A F

A F A F

A F

A F

A F

A F

A F

A F

A F

Figure 3.15: Flowgraph for matrix AF ⊗AF

71

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

Similar to (AF ⊗AF) in equation (3.172), (BF ⊗BF) can be expressed as follows:

(BF⊗BF) = BF ·I8⊗I8·BF = (BF⊗I8)·(I8⊗BF) = P64,8·(I8⊗BF)·P64,8·(I8⊗BF) (3.174)

Matrix (I8 ⊗BF) can be expanded to the following 64× 64 matrix:

(I8 ⊗BF) =

BF 0 0 0 0 0 0 0
0 BF 0 0 0 0 0 0
0 0 BF 0 0 0 0 0
0 0 0 BF 0 0 0 0
0 0 0 0 BF 0 0 0
0 0 0 0 0 BF 0 0
0 0 0 0 0 0 BF 0
0 0 0 0 0 0 0 BF

(3.175)

Equation (3.175) is illustrated in the form of a flowgraph in figure 3.16. Like the initial
permutation in figure 3.15, the final permutation with the stride-by-8 permutation matrix
is already represented by the choice of the output vectors of the right row of the matrices
labeled with BF . The output vectors in figure 3.16 are the values of the DCT with the
scaling factors from (DF ⊗DF) omitted and without the final permutation with (PF ⊗PF),
therefore they are labeled F̃ ′(u, v) to avoid confusion with the output F̃ (n, m) of the DCT.
Again, this flowgraph uses a hollow square at line ends to represent an 8-element vector
input and output of an 8 × 8 matrix and the boxes labeled BF and P64,8 represent the
respective matrices.

The last missing tensor product in equation (3.170), MF ⊗ MF , can be written in the
form of a 64× 64 matrix as follows:

(MF ⊗MF) =

MF 0 0 0 0 0 0 0
0 MF 0 0 0 0 0 0
0 0 C4 ·MF 0 0 0 0 0
0 0 0 MF 0 0 0 0
0 0 0 0 −C2 ·MF 0 −C6 ·MF 0
0 0 0 0 0 C4 ·MF 0 0
0 0 0 0 −C6 ·MF 0 C2 ·MF 0
0 0 0 0 0 0 0 MF

(3.176)

Rows 0, 1, 3 and 7 represent 4 matrices M1 = MF , each operating on a sequence of 8
elements of the input vector, therefore contributing 4 × 3 = 12 additions and 4 × 5 = 20
multiplications to the overall complexity of this algorithm. See figure 3.13 for a flowgraph
of M1 = MF .

Rows 2 and 5 each represent a variant of matrix MF that is scaled by C4. Each of these
two matrices M2 = C4 · MF is operating on a sequence of 8 input elements of the input
vector. While M2 requires 9 multiplications, 2 of them are actually multiplications with
C4 · C4 = 1

2 , which can be easily performed by a right shift operation. The 8 × 8 matrix

72

3.4.3. FEIG’S FAST TWO-DIMENSIONAL DCT

F'(0,0)
F'(0,1)

F'(0,7)

····

F'(1,0)
F'(1,1)

F'(1,7)

····

F'(2,0)
F'(2,1)

F'(2,7)

····

F'(3,0)
F'(3,1)

F'(3,7)

····

F'(4,0)
F'(4,1)

F'(4,7)

····

F'(5,0)
F'(5,1)

F'(5,7)

····

F'(6,0)
F'(6,1)

F'(6,7)

····

F'(7,0)
F'(7,1)

F'(7,7)

····

P
64,8

~
~

~

~
~

~

~
~

~

~
~

~

~
~

~

~
~

~

~
~

~

~
~

~

B F

B F

B F

B F

B F B F

B F

B F

B F

B F

B F B F

B FB F

B F B F

Figure 3.16: Flowgraph for matrix BF ⊗BF

73

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

1
2

a5

a6

a2

a1

a1

a1

a1

1
2

1
2

Figure 3.17: Flowgraph for matrix M2

M2 = C4 ·MF can therefore be written as follows:

M2 = C4 ·MF =

C4 0 0 0 0 0 0 0
0 C4 0 0 0 0 0 0
0 0 1

2 0 0 0 0 0
0 0 0 C4 0 0 0 0
0 0 0 0 −C2 · C4 0 −C6 · C4 0
0 0 0 0 0 1

2 0 0
0 0 0 0 −C6 · C4 0 C2 · C4 0
0 0 0 0 0 0 0 C4

(3.177)

Figure 3.17 shows the flowgraph of M2 from which we can see, that the two rows in equation
(3.176) with M2 = C4 ·MF contribute 2× 7 = 14 multiplications, 2× 3 = 6 additions and
2 × 2 = 4 shift operations to the overall complexity of the Feig 2D-DCT. The constants
used in figure 3.17 are the ones from equations (3.144) and (3.148).

The remaining rows and columns in equation (3.176) can be represented by the tensor

74

3.4.3. FEIG’S FAST TWO-DIMENSIONAL DCT

a2

a4

a5

Figure 3.18: Flowgraph for matrix N1

product M3 =
(
−C2 −C6
−C6 C2

)
⊗MF = Ñ ⊗MF with

Ñ =
(
−C2 −C6

−C6 C2

)
=
(

1 1 0
1 0 1

)
·

− cos 3π
8 0 0

0 (cos 3π
8 − cos π

8) 0
0 0

(
cos π

8 + cos 3π
8

)
·
1 1

1 0
0 1

(3.178)

With equation (3.156) the tensor product M3 = Ñ ⊗MF can be written as:

M3 = Ñ ⊗MF = P16,2 · (MF ⊗ Ñ) · P16,8 (3.179)

The 16× 16 matrix MF ⊗ Ñ is defined as:

(MF ⊗ Ñ) =

Ñ 0 0 0 0 0 0 0
0 Ñ 0 0 0 0 0 0
0 0 C4 · Ñ 0 0 0 0 0
0 0 0 Ñ 0 0 0 0
0 0 0 0 −C2 · Ñ 0 −C6 · Ñ 0
0 0 0 0 0 C4 · Ñ 0 0
0 0 0 0 −C6 · Ñ 0 C2 · Ñ 0
0 0 0 0 0 0 0 Ñ

(3.180)

This means, that the first, second, fourth and eighth pair of input vector elements of MF⊗Ñ
are matrix-multiplied by N1 = Ñ and that the third and fifth pair of input vector elements
of MF ⊗ Ñ are matrix-multiplied by a scaled variant of Ñ , N2 = C4 · Ñ . These 6 matrix
multiplications require each 3 multiplications and 3 additions. Figures 3.18 and 3.19 show
the flowgraphs of N1 and N2, respectively. The constants used in figure 3.19 are the ones
from equations (3.144) and (3.148).

The remaining rows in equation (3.180) can be expressed as the tensor product

75

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

a5

a 6

a2
1
2

Figure 3.19: Flowgraph for matrix N2

C
 2

4

C
 2

4

1
2

1
2

Figure 3.20: Flowgraph for matrix N3 = Ñ ⊗ Ñ

N3 = Ñ ⊗ Ñ and can be written in matrix form and factorized as follows:

N3 = (Ñ ⊗ Ñ) =
1
2
·

(1 + C4) C4 C4 (1− C4)

C4 −(1 + C4) (1− C4) −C4

C4 (1− C4) −(1 + C4) −C4

(1− C4) −C4 −C4 (1 + C4)

 (3.181)

=

1 0 0 1
0 1 −1 0
0 1 1 0
−1 0 0 1

 ·

1 1 0 0
1 −1 0 0
0 0 1 0
0 0 0 1

 ·

C4
2 0 0 0
0 C4

2 0 0
0 0 1

2 0
0 0 0 1

2

 ·

1 0 0 −1
0 1 1 0
0 1 −1 0
1 0 0 1

Thus, N3 = Ñ ⊗ Ñ can be calculated with 10 additions, 2 multiplications and 2 shift
operations. Figure 3.20 shows the flowgraph of N3 = Ñ ⊗ Ñ with C4 defined according
to equation (3.38). If we combine the flowgraphs in figures 3.18, 3.19, and 3.20 for the
matrices N1, N2 and N3, we get the flowgraph for matrix M3 = Ñ ⊗ MF in figure 3.21.
The constants used in figure 3.21 are the ones from equations (3.38), (3.144) and (3.148).

Now that we have all individual flowgraphs for AF ⊗AF , BF ⊗BF , M1, M2 and M3, we
can finally derive a flowgraph for the calculation of K ′

8 ⊗K ′
8 without the final permutation

76

3.4.3. FEIG’S FAST TWO-DIMENSIONAL DCT

C
 2

4

C
 2

4

1
2

1
2

a 2

a 4

a 5

a 2

a 4

a 5

a 2

a 4

a 5

a 2

a 4

a 5

a5

a 6

a5

a 6

P16,8 P16,2M N⊗F

a 2
1
2 ·

a 2
1
2 ·

~

Figure 3.21: Flowgraph for matrix M3 = Ñ ⊗MF

77

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

Stage Multiplications Additions Shifts

BF ⊗BF 0 16× 18 0
AF ⊗AF 0 16× 8 0
MF ⊗MF :

Rows 1, 2, 4, 8 (M1) 4× 5 4× 3 0
Rows 3, 6 (M2) 2× 7 2× 3 2× 2
Rows 5, 7 (MF ⊗ Ñ):

Rows 1, 2, 4, 8 (N1) 4× 3 4× 3 0
Rows 3, 6 (N2) 2× 3 2× 3 0
Rows 5, 7 (N3) 2 10 2

Totals: 54 462 6

Table 3.1: Computational complexity of Feig’s 2D DCT

by PF ⊗PF in figure 3.22 and sum up the operations of the different stages in Feig’s scaled
2D DCT in table 3.1.

78

3.4.3. FEIG’S FAST TWO-DIMENSIONAL DCT
f(

0
,0

)
f(

0
,1

)

f(
0

,7
)

· · ··

f(
1

,0
)

f(
1

,1
)

f(
1

,7
)

· · ··

f(
2

,0
)

f(
2

,1
)

f(
2

,7
)

· · ··

f(
3

,0
)

f(
3

,1
)

f(
3

,7
)

· · ··

f(
4

,0
)

f(
4

,1
)

f(
4

,7
)

· · ··

f(
5

,0
)

f(
5

,1
)

f(
5

,7
)

· · ··

f(
6

,0
)

f(
6

,1
)

f(
6

,7
)

· · ··

f(
7

,0
)

f(
7

,1
)

f(
7

,7
)

· · ··

P 6
4

,8

F
'(0

,0
)

F
'(0

,1
)

F
'(0

,7
)

· · ··

F
'(1

,0
)

F
'(1

,1
)

F
'(1

,7
)

· · ··

F
'(2

,0
)

F
'(2

,1
)

F
'(2

,7
)

· · ··

F
'(3

,0
)

F
'(3

,1
)

F
'(3

,7
)

· · ··

F
'(4

,0
)

F
'(4

,1
)

F
'(4

,7
)

· · ··

F
'(5

,0
)

F
'(5

,1
)

F
'(5

,7
)

· · ··

F
'(6

,0
)

F
'(6

,1
)

F
'(6

,7
)

· · ··

F
'(7

,0
)

F
'(7

,1
)

F
'(7

,7
)

· · ··

P 6
4

,8

~ ~

1
M

1
M

2
M

1
M

2
M

3
M

1
M

B
F

B
F

B
F

B
F

B
F

B
F

B
F

B
F

B
F

B
F

B
F

B
F

B
F

B
F

B
F

B
F

A
F

A
F

A
F

A
F

A
F

A
F

A
FA
F

A
F

A
F

A
F

A
F

A
F

A
F

A
F

A
F

F
ig

ur
e

3.
22

:
F
lo

w
gr

ap
h

of
K

′ 8
⊗

K
′ 8

w
it

ho
ut

th
e

fin
al

pe
rm

ut
at

io
n

by
(P

⊗
P

)

79

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

3.4.4 Feig’s fast two-dimensional inverse DCT

This section will show in a similar manner to section 3.4.3 how the inverse Arai-Agui-
Nakajima DCT can be extended to a true two-dimensional DCT.

From equation (3.146) we can derive the following for the inverse Arai-Agui-Nakajima
DCT:

f(0)
f(1)
f(2)
f(3)
f(4)
f(5)
f(6)
f(7)

= K8

−1 ·

F̃ (0)
F̃ (1)
F̃ (2)
F̃ (3)
F̃ (4)
F̃ (5)
F̃ (6)
F̃ (7)

= AI ·MI ·BI · PI ·DI ·

F̃ (0)
F̃ (1)
F̃ (2)
F̃ (3)
F̃ (4)
F̃ (5)
F̃ (6)
F̃ (7)

(3.182)

The matrices AI , MI , BI , PI and DI are as follows (compare with equation(3.146)):

AI =

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 −1 0 0 0
0 0 1 0 0 −1 0 0
0 1 0 0 0 0 −1 0
1 0 0 0 0 0 0 −1

·

1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 1 −1 0 0 0 0 0
1 0 0 −1 0 0 0 0
0 0 0 0 −1 −1 1 −1
0 0 0 0 0 1 −1 1
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 1

·

1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

(3.183)

MI =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0

√
2 0 0 0 0 0

0 0 0 1 0 0 0 0
0 0 0 0 −2 cos π

8 0 −2 cos 3π
8 0

0 0 0 0 0
√

2 0 0
0 0 0 0 −2 cos 3π

8 0 2 cos π
8 0

0 0 0 0 0 0 0 1

(3.184)

80

3.4.4. FEIG’S FAST TWO-DIMENSIONAL INVERSE DCT

BI =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 −1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 1

·

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 −1
0 0 0 0 0 1 1 0
0 0 0 0 0 1 −1 0
0 0 0 0 1 0 0 1

(3.185)

PI =

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0

(3.186)

DI =

1
2
√

2
0 0 0 0 0 0 0

0 C1
2 0 0 0 0 0 0

0 0 C2
2 0 0 0 0 0

0 0 0 C3
2 0 0 0 0

0 0 0 0 1
2
√

2
0 0 0

0 0 0 0 0 C5
2 0 0

0 0 0 0 0 0 C6
2 0

0 0 0 0 0 0 0 C7
2

(3.187)

Figures 3.23, 3.24 and 3.25 show the flowgraphs of matrices AI , BI and MI , respectively.
For figure 3.25, the values of a1, a2, a3, a4 and a5 are the ones from equation (3.144). With
the help of the inversion property (see equation (3.154)) of the tensor product, (K8 ⊗K8)

−1

can now be written as:

(K8 ⊗K8)
−1 = K−1

8 ⊗K−1
8 = (AI ·MI ·BI · PI ·DI)⊗ (AI ·MI ·BI · PI ·DI) (3.188)

From the distributive property of the tensor product we get:

(K8 ⊗K8)
−1 = ((AI ·MI ·BI · PI)⊗ (AI ·MI ·BI · PI)) · (DI ⊗DI) (3.189)

With the shortcut K ′
8
−1 = AI ·MI ·BI · PI we can now write:

(K8 ⊗K8)
−1 = (K ′

8
−1 ⊗K ′

8
−1) · (DI ⊗DI) = (K ′

8 ⊗K ′
8)
−1 · (DI ⊗DI) (3.190)

The matrix (DI ⊗DI) is a diagonal matrix of dimension 64× 64, containing the 64 scaling
factors that can be absorbed into the quantization values. Again, for practical reasons, in
the following we will rather deal with (K ′

8 ⊗K ′
8)
−1 than (K8 ⊗K8)

−1, keeping in mind,
that the input vector of (K ′

8 ⊗K ′
8)
−1 needs to be scaled by (DI ⊗DI).

81

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

f(0)

f(6)

f(1)

f(2)

f(3)

f(4)

f(5)

f(7)

Figure 3.23: Flowgraph for matrix AI

½·C ·F(2)

½·C ·F(6)

½·C ·F(5)

½·C ·F(1)

½·C ·F(7)

½·C ·F(3)

¼· 2·F(4)

2

6

5

1

7

3

¼· 2·F(0)~

~

~

~

~

~

~

~

Figure 3.24: Flowgraph for matrix BI

82

3.4.4. FEIG’S FAST TWO-DIMENSIONAL INVERSE DCT

2a1

2a2

2a3

2a4

2a5

Figure 3.25: Flowgraph for matrix MI

Again using the distributive property of tensor products, we can express (K ′
8 ⊗K ′

8) as
follows:

(K ′
8 ⊗K ′

8)
−1 = (AI ⊗AI) · (MI ⊗MI) · (BI ⊗BI) · (PI ⊗ PI) (3.191)

The matrix (PI ⊗ PI) in equation (3.191) is simply a 64 × 64 permutation matrix that
reorders the input from natural order to an input order suitable for BI ⊗ BI , but does
not contribute to computational complexity. For the other factors in equation (3.191) we
can again choose whether we want to apply a row-column scheme, or whether we want
to calculate the tensor product to form a 64 × 64 matrix. Like in section 3.4.3 we will
follow Feig’s approach and use a row-column scheme for the tensor products (AI ⊗AI) and
(BI ⊗BI), which contain merely additions, but to calculate the tensor product (MI ⊗MI),
which contains all the multiplications.

The tensor product (BI ⊗BI) can be written as follows:

(BI ⊗BI) = (I8 ·BI)⊗ (BI · I8) = (I8 ⊗BI) · (BI ⊗ I8) (3.192)

Using equation (3.156), this can be written as follows:

(BI ⊗BI) = (I8 ⊗BI) · P64,8 · (I8 ⊗BI) · P64,8 (3.193)

Matrix P64,8 simply permutes the 64 elements of the input vector, and (I8 ⊗ BI) can be

83

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

expanded to the following 64× 64 matrix:

(I8 ⊗BI) =

BI 0 0 0 0 0 0 0
0 BI 0 0 0 0 0 0
0 0 BI 0 0 0 0 0
0 0 0 BI 0 0 0 0
0 0 0 0 BI 0 0 0
0 0 0 0 0 BI 0 0
0 0 0 0 0 0 BI 0
0 0 0 0 0 0 0 BI

(3.194)

Equations (3.193) and (3.194) are illustrated in the form of a flowgraph in figure 3.26.
Again, this flowgraph uses a hollow square at line ends to represent an 8-element vector
input and output of an 8×8 matrix. The boxes labeled BI and P64,8 represent the respective
matrices. Also, the initial permutation with the stride-by-8 permutation matrix is already
represented by the choice of the input vectors to the left row of the matrices labeled with
BI . The input vectors in figure 3.26 are the values of the DCT coefficients but with the
scaling factors from (DI ⊗DI) and the permutation from (PI ⊗PI) omitted, therefore they
are labeled F̃ ′(u, v) to avoid confusion with the coefficients F̃ (u, v) of the DCT.

Similar to (BI ⊗BI) in equation (3.193), (AI ⊗AI) can be expressed as follows:

(AI⊗AI) = AI ·I8⊗I8 ·AI = (AI⊗I8)·(I8⊗AI) = P64,8 ·(I8⊗AI)·P64,8 ·(I8⊗AI) (3.195)

Matrix (I8 ⊗AI) can be expanded to the following 64× 64 matrix:

(I8 ⊗AI) =

AI 0 0 0 0 0 0 0
0 AI 0 0 0 0 0 0
0 0 AI 0 0 0 0 0
0 0 0 AI 0 0 0 0
0 0 0 0 AI 0 0 0
0 0 0 0 0 AI 0 0
0 0 0 0 0 0 AI 0
0 0 0 0 0 0 0 AI

(3.196)

Equation (3.196) is illustrated in the form of a flowgraph in figure 3.27. Like the initial
permutation in figure 3.26, the final permutation with the stride-by-8 permutation matrix
is already represented by the choice of the output vectors of the right row of the matrices
labeled with AI . Again, this flowgraph uses a hollow square at line ends to represent an
8-element vector input and output of an 8 × 8 matrix and the boxes labeled AI and P64,8

represent the respective matrices.
The last missing tensor product in equation (3.191), MI ⊗ MI , can be written in the

form of a 64× 64 matrix as follows:

(MI⊗MI) =

MI 0 0 0 0 0 0 0
0 MI 0 0 0 0 0 0
0 0

√
2 ·MI 0 0 0 0 0

0 0 0 MI 0 0 0 0
0 0 0 0 −2C2 ·MI 0 −2C6 ·MI 0
0 0 0 0 0

√
2 ·MI 0 0

0 0 0 0 −2C6 ·MI 0 2C2 ·MI 0
0 0 0 0 0 0 0 MI

(3.197)

84

3.4.4. FEIG’S FAST TWO-DIMENSIONAL INVERSE DCT

P64,8

BI

BI

BI

BI

BI

BI

BI

BI

BI

BI

BI

BI

BI

BI

BI

BI

F'(0,0)
F'(0,1)

F'(0,7)

····

F'(1,0)
F'(1,1)

F'(1,7)

····

F'(2,0)
F'(2,1)

F'(2,7)

····

F'(3,0)
F'(3,1)

F'(3,7)

····

F'(4,0)
F'(4,1)

F'(4,7)

····

F'(5,0)
F'(5,1)

F'(5,7)

····

F'(6,0)
F'(6,1)

F'(6,7)

····

F'(7,0)
F'(7,1)

F'(7,7)

····

~
~

~

~
~

~

~
~

~

~
~

~

~
~

~

~
~

~

~
~

~

~
~

~

Figure 3.26: Flowgraph for matrix BI ⊗BI

85

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

P64,8

A I

A I

A I

A I

A I

A I

A I

A I

A I

A I

A I

A I

A I

A I

A I

A I

f(0,0)
f(0,1)

f(0,7)

····

f(1,0)
f(1,1)

f(1,7)

····

f(2,0)
f(2,1)

f(2,7)

····

f(3,0)
f(3,1)

f(3,7)

····

f(4,0)
f(4,1)

f(4,7)

····

f(5,0)
f(5,1)

f(5,7)

····

f(6,0)
f(6,1)

f(6,7)

····

f(7,0)
f(7,1)

f(7,7)

····

Figure 3.27: Flowgraph for matrix AI ⊗AI

86

3.4.4. FEIG’S FAST TWO-DIMENSIONAL INVERSE DCT

Rows 0, 1, 3 and 7 represent 4 matrices M̃1 = MI , each operating on a sequence of 8
elements of the input vector, therefore contributing 4 × 3 = 12 additions and 4 × 5 = 20
multiplications to the overall complexity of this algorithm. See figure 3.25 for a flowgraph
of M̃1 = MI .

Rows 2 and 5 each represent a variant of matrix MI that is scaled by
√

2. Each of these
two matrices M̃2 =

√
2 · MI is operating on a sequence of 8 input elements of the input

vector. While M̃2 requires 9 multiplications, 2 of them are actually multiplications with√
2 ·

√
2 = 2, which can be easily performed by a left shift operation. The 8 × 8 matrix

M̃2 =
√

2 ·MI can be written as follows:

M̃2 =
√

2 ·MI =

√
2 0 0 0 0 0 0 0

0
√

2 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0

√
2 0 0 0 0

0 0 0 0 −2
√

2 · C2 0 −2
√

2 · C6 0
0 0 0 0 0 2 0 0
0 0 0 0 −2

√
2 · C6 0 2

√
2 · C2 0

0 0 0 0 0 0 0
√

2

(3.198)

Figure 3.28 shows the flowgraph of M̃2 from which we can see, that the two rows in equation
(3.197) with M̃2 =

√
2 ·MI contribute 2× 7 = 14 multiplications, 2× 3 = 6 additions and

2 × 2 = 4 shift operations to the overall complexity of the inverse Feig 2D-DCT. The
constants used in figure 3.28 are the ones from equations (3.144) and (3.148).

The remaining rows and columns in equation (3.197) can be represented by the tensor
product M̃3 = 2 ·

(
−C2 −C6
−C6 C2

)
⊗ MI = 2 · Ñ ⊗ MI with Ñ as defined in equation (3.178).

The factor 2 can be absorbed into the diagonal matrix in the factorization of Ñ , so 2Ñ can
be written as:

2Ñ = 2 ·
(
−C2 −C6

−C6 C2

)
(3.199)

=
(

1 1 0
1 0 1

)
·

−2 · cos 3π
8 0 0

0 2 · (cos 3π
8 − cos π

8) 0
0 0 2 ·

(
cos π

8 + cos 3π
8

)
 ·

1 1
1 0
0 1

With equation (3.156) the tensor product M̃3 = 2Ñ ⊗MI can be written as:

M̃3 = 2Ñ ⊗MI = P16,2 · (MI ⊗ 2Ñ) · P16,8 (3.200)

The 16× 16 matrix MI ⊗ 2Ñ is defined as:

(MI⊗2Ñ) =

2Ñ 0 0 0 0 0 0 0
0 2Ñ 0 0 0 0 0 0
0 0 2

√
2 · Ñ 0 0 0 0 0

0 0 0 2Ñ 0 0 0 0
0 0 0 0 −4C2 · Ñ 0 −4C6 · Ñ 0
0 0 0 0 0 2

√
2 · Ñ 0 0

0 0 0 0 −4C6 · Ñ 0 4C2 · Ñ 0
0 0 0 0 0 0 0 2Ñ

(3.201)

87

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

2a1

2

2

2a1

2a1

2a1

2a2

4a6

4a5

Figure 3.28: Flowgraph for matrix M̃2

88

3.4.4. FEIG’S FAST TWO-DIMENSIONAL INVERSE DCT

2·a2

4

5

2·a

2·a

Figure 3.29: Flowgraph for matrix Ñ1

4a5

6

2

4a

2a

Figure 3.30: Flowgraph for matrix Ñ2

This means, that the first, second, fourth and eighth pair of input vector elements of MI⊗2Ñ
are matrix-multiplied by Ñ1 = 2Ñ and that the third and fifth pair of input vector elements
of M̃ ⊗ 2Ñ are matrix-multiplied by a scaled variant of Ñ , Ñ2 = 2

√
2 · Ñ . These 6 matrix

multiplications require each 3 multiplications and 3 additions. Figures 3.29 and 3.30 show
the flowgraphs of Ñ1 and Ñ2, respectively. The constants used in figures 3.29 and 3.30 are
the ones from equations (3.144) and (3.148).

The remaining rows in equation (3.201) can be expressed as the tensor product
Ñ3 = 4Ñ ⊗ Ñ and can be written in matrix form and factorized as follows:

Ñ3 = (4Ñ ⊗ Ñ) = 2 ·

(1 + C4) C4 C4 (1− C4)

C4 −(1 + C4) (1− C4) −C4

C4 (1− C4) −(1 + C4) −C4

(1− C4) −C4 −C4 (1 + C4)

 (3.202)

=

1 0 0 1
0 1 −1 0
0 1 1 0
−1 0 0 1

 ·

1 1 0 0
1 −1 0 0
0 0 1 0
0 0 0 1

 ·

2 · C4 0 0 0

0 2 · C4 0 0
0 0 2 0
0 0 0 2

 ·

1 0 0 −1
0 1 1 0
0 1 −1 0
1 0 0 1

Thus, Ñ3 = 4 · Ñ ⊗ Ñ can be calculated with 10 additions, 2 multiplications and 2 shift
operations. Figure 3.31 shows the flowgraph of Ñ3 = 4 · Ñ ⊗ Ñ with C4 defined according
to equation (3.38). If we combine the flowgraphs in figures 3.29, 3.30, and 3.31 for the
matrices Ñ1, Ñ2 and Ñ3, we get the flowgraph for matrix M̃3 = 2Ñ ⊗ MI in figure 3.32.
The constants used in figure 3.32 are the ones from equations (3.38), (3.144) and (3.148).

89

CHAPTER 3. THE DISCRETE COSINE TRANSFORM

42C

2

2

42C

Figure 3.31: Flowgraph for matrix Ñ3 = 4 · Ñ ⊗ Ñ

Now that we have all individual flowgraphs for AI⊗AI , BI⊗BI , M̃1, M̃2 and M̃3, we can
finally derive a flowgraph for the calculation of (K ′

8 ⊗K ′
8)
−1 without the initial permutation

by PI ⊗ PI in figure 3.33. If we now count the operations required to calculate Feig’s 2D
IDCT, it will be as in the case of the forward DCT, 54 multiplications, 462 additions and
6 shifts.

90

3.4.4. FEIG’S FAST TWO-DIMENSIONAL INVERSE DCT

2 ·a2

4

5

P16,8 P16,2M 2N⊗

2 ·a

2 ·a

2 ·a2

4

52 ·a

2 ·a

2 ·a2

4

52 ·a

2 ·a

2 ·a2

4

52 ·a

2 ·a

4 ·a5

6

22 · a

4 ·a

42 · C

I

2

2

42 · C

4 ·a5

6

22 · a

4 ·a

~

Figure 3.32: Flowgraph for matrix M̃3 = 2Ñ ⊗MI

91

CHAPTER 3. THE DISCRETE COSINE TRANSFORM
f(0,0)
f(0,1)

f(0,7)

··· ·

f(1,0)
f(1,1)

f(1,7)

··· ·

f(2,0)
f(2,1)

f(2,7)

··· ·

f(3,0)
f(3,1)

f(3,7)

··· ·

f(4,0)
f(4,1)

f(4,7)

··· ·

f(5,0)
f(5,1)

f(5,7)

··· ·

f(6,0)
f(6,1)

f(6,7)

··· ·

f(7,0)
f(7,1)

f(7,7)

··· ·

P
64,8

F'(0,0)
F'(0,1)

F'(0,7)

··· ·

F'(1,0)
F'(1,1)

F'(1,7)

··· ·

F'(2,0)
F'(2,1)

F'(2,7)

··· ·

F'(3,0)
F'(3,1)

F'(3,7)

··· ·

F'(4,0)
F'(4,1)

F'(4,7)

··· ·

F'(5,0)
F'(5,1)

F'(5,7)

··· ·

F'(6,0)
F'(6,1)

F'(6,7)

··· ·

F'(7,0)
F'(7,1)

F'(7,7)

··· ·

P
64,8

~~~~~~~~~~~~~~~~~~~~~~~~

1
M

1
M

2
M

1
M

2
M

3
M

1
M ~~~~~~~

A
I

A
I

A
I

A
I

A
I

A
I

A
I

A
I

A
I

A
I

A
I

A
I

A
I

A
I

A
I

A
I

B
I

B
I

B
I

B
I

B
I

B
I

B
I

B
I

B
I

B
I

B
I

B
I

B
I

B
I

B
I

B
I

F
igure

3.33:
F
low

graph
of

(K
′8 ⊗

K
′8 ) −

1
w

ithout
the

initial
perm

utation
by

(P
I ⊗

P
I )

92



Chapter 4

Fast Image Scaling in the Context
of JPEG Decoding

Everything should be as simple as it is, but not simpler.

– Albert Einstein

When a continuous tone still image has to be rendered on an output device such as
a computer monitor, it may become necessary to stretch or compact it to fit the

dimensions of the output device. It is very obvious that compacting can be done in the
spatial domain by taking some weighted sum of the values of adjacent pixels and that this
is especially easy if the old size of the image is some power of 2 times the new size. But
even in this case the whole picture has to be decoded first and then resized. Performing
image rescaling in the spatial domain will therefore always lead to an additional computa-
tional complexity and higher memory requirements than if we already try to incorporate
the downscaling process into the IDCT decoding process1. Therefore we are investigat-
ing possibilities to rescale the image during the 8-point IDCT process, thereby simplifying
the decoding process itself. In the following a very fast and computationally inexpensive
possibility to do image scaling in the spatial domain will be presented first, along with
recommendations of how more sophisticated and accurate solutions could look like.

4.1 Image Scaling in the Spatial Domain

Image scaling in the spatial domain means that first the complete image is decoded and
afterwards this “source image” is scaled to a “destination image” with a new resolution that
could be finer (upsampling) or coarser (downsampling). There are quite a few techniques for
this that differ mostly in computational complexity and the achievable accuracy. Common
to all techniques in the spatial domain is an initial loop over all destination pixels in one
dimension, resulting in an image that is scaled in this dimension, followed by a loop over the

1Again, we will strictly focus on IDCTs with 8-point input vectors, but the results and techniques can
probably also be applied to IDCTs of different input vector sizes.

93



CHAPTER 4. FAST IMAGE SCALING IN THE CONTEXT OF JPEG DECODING

destination pixels in the other dimension, which finally yields the complete scaled image.
The difference between the various techniques is the method of obtaining destination pixel
values from source pixel values. The most simple technique consists of mapping destination
pixels to source pixels and is described in [25]. This method simply determines at each
destination pixel location the single nearest source pixel location that lends this destination
pixel its value. This way only pixel values are copied from one source pixel location to one or
more destination pixel locations. It could also be possible in the case of downsampling that
some source pixel values are completely disregarded2. As an optimization to the pseudo-
code in [25], prior to the actual mapping process, a mapping buffer g nMapping was used
for the project used in this thesis. This buffer contains at the indices corresponding to the
destination pixels the source pixel index. The source pixels are determined only once for
each dimension so a lot of computational effort is saved in comparison to the pseudo-code
in [25]. In order for this code to support both upsampling and downsampling, a line buffer
(g nLineBuf) is used for intermediate storage of the row or the column of the source pixels.
The actual source code for the function that scales a bitmap (ScaleBitmap) is the following3,
one pixel is assumed to be coded in two bytes (data type short):

#define HORZPIXELS 800

unsigned short g_nLineBuf[HORZPIXELS];

/* We assume, that we always have more pixels horizontally than vertically.

We allocate this globally, so we don’t need to increase the stack size and a maximum of

data can be held in XRAM/IRAM. */

unsigned short g_nMapping[HORZPIXELS];

/* This array contains the mapping of destination index to source index.

It can be calculated once before stretching a row and can then be reused

for all subsequent rows. */

void ScaleBitmap(unsigned short GDI_HUGE *pic /*picture data*/,

int nXSrcSize /*horizontal width of source picture*/,

int nYSrcSize /*vertical width of source picture*/,

int nXDestSize/*horizontal width of dest. buffer*/,

int nYDestSize/*vertical width of dest. buffer*/)

{

unsigned short GDI_HUGE *workpic = pic;

unsigned long dwRowCol, dwPixel;

float fXSrcSize = (float)nXSrcSize;

float fYSrcSize = (float)nYSrcSize;

float fXDestSize = (float)nXDestSize;

float fYDestSize = (float)nYDestSize;

2This leads to the so-called Moiré-Effect.
3It is assumed that the experienced reader will be able to understand this code without further explana-

tions, comparing it with the pseudocode in [25] will be of additional help. The code shown here is guaranteed
from the context where it was taken to not exceed the boundaries of the buffers in use, so safety checks can
not only be omitted for the sake of better readability. This code actually preserves the aspect ratio of the
image so at least one destination image dimension is fully covered.

94



4.1. IMAGE SCALING IN THE SPATIAL DOMAIN

/* account for the aspect ratio: */

if ((fXSrcSize/fYSrcSize) > (fXDestSize/fYDestSize))

{

nYDestSize = (int)(fXDestSize * fYSrcSize/fXSrcSize);

fYDestSize = (float)nYDestSize;

}

else

{

nXDestSize = (int)(fYDestSize * fXSrcSize/fYSrcSize);

fXDestSize = (float)nXDestSize;

}

/* calculate the horizontal pixel mapping: */

for (dwPixel = 0;dwPixel<nXDestSize;dwPixel++)

g_nMapping[dwPixel] = (int)(((float)dwPixel)* fXSrcSize/fXDestSize + 0.5);

// we add 0.5 to get the nearest int value instead of the integer part

/* now scale horizontally: */

for (dwRowCol=0;dwRowCol<nYDestSize;dwRowCol++)

{

memcphfw (g_nLineBuf,workpic,HORZPIXELS);

for (dwPixel = 0;dwPixel<nXDestSize;dwPixel++)

workpic[dwPixel] = g_nLineBuf[g_nMapping[dwPixel]];

workpic = &workpic[HORZPIXELS];

}

/* calculate the vertical pixel mapping: */

for (dwPixel = 0;dwPixel<nYDestSize;dwPixel++)

g_nMapping[dwPixel] = (int)(((float)dwPixel)* fYSrcSize/fYDestSize + 0.5);

// we add 0.5 to get the nearest int value instead of the integer part

workpic = pic;

/* now scale vertically: */

for (dwRowCol=0;dwRowCol<nXDestSize;dwRowCol++)

{

for (dwPixel = 0;dwPixel<VERTPIXELS;dwPixel++)

g_nLineBuf[dwPixel] = workpic[dwPixel*HORZPIXELS];

for (dwPixel = 0;dwPixel<nYDestSize;dwPixel++)

workpic[dwPixel*HORZPIXELS] = g_nLineBuf[g_nMapping[dwPixel]];

workpic = &workpic[1];

}

}

It should be clear that the above code only yields visually appealing results for scaling with
factors that are greater than 0.5 and smaller than 2. For scaling factors that are smaller than
0.5, Moiré-Effects will become more and more apparent. For scaling factors greater than 2,
one source pixel will lend its value to 2 or more adjacent destination pixels per dimension
which will make the image look rather “blocky”. If better accuracy is required or Moiré-
Effects should be circumvented, more sophisticated methods than the simple pixel mapping
shown above must be used. For the special case of downsampling to a half or by some other
power of 2, simply the arithmetic mean of two adjacent source pixels must be calculated in
each direction to form the destination pixel value. Generally, a destination pixel value can
be determined by a weighted sum of source pixel values. In theory, for arbitrary scaling each

95



CHAPTER 4. FAST IMAGE SCALING IN THE CONTEXT OF JPEG DECODING

source pixel is represented by a weighted sinc-Function4 and destination pixel values that
lie inbetween source pixel values are determined by summing up the values of all weighted
sinc-Functions at this point. In practice however, very often only the weighted sums of
the two neighbouring source pixels of a new pixel are used, since the sinc-Function slowly
approaches to zero for all arguments whose absolute value is greater than 1. The interested
reader might find useful information and C source code to accomplish this in [21], [26] and
especially [30], which contains a discussion of various filters and their properties in the
frequency domain.

4The sinc function is the Inverse Fourier Transform of the ideal bandlimiting low-pass filter, see [30].

96



4.2. IMAGE SCALING IN THE IDCT PROCESS

4.2 Image Scaling in the IDCT Process

In this section we will revisit the inverse Loeffler-Ligtenberg-Moschytz DCT from section
3.3.4. We will first try to simplify the algorithm from Loeffler, Ligtenberg and Moschytz
for a downscaling by a factor of 2. We will then try to simplify matters by downscaling to
a fourth of the original image’s size.

4.2.1 Image scaling in the IDCT process to half of the original size

If we want to take the average of two adjacent values of the result vector in equation (3.96),
the leftmost matrix on the right side of equation (3.96) must be reduced to a matrix with
four rows instead of eight. The new rows have to be the sums of two successive rows of
the former matrix. This matrix then still has a symmetrical form and can be simplified to
have only 4 columns by adding each two successive rows of the matrix that follows to form
a newer matrix. If we continue compacting the matrices from equation (3.96) this way, the
final result will be the following:

1
2


f(0) + f(1)
f(2) + f(3)
f(4) + f(5)
f(6) + f(7)

 =
1

4
√

2


1 0 0 1
0 1 1 0
0 1 −1 0
1 0 0 −1



·


1 1 0 0 0 0
1 −1 0 0 0 0
0 0

√
2(C3 − C1)

√
2(−C1 − C5)

√
2(C3 + C7)

√
2(C7 + C5)

0 0
√

2(C7 − C5)
√

2(C3 − C7)
√

2(C5 − C1)
√

2(C3 + C1)



·



2 0 0 0 0 0 0
0

√
2(C6 + C2)

√
2(C6 − C2) 0 0 0 0

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



·



1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0


·



F̃ (0)
F̃ (1)
F̃ (2)
F̃ (3)
F̃ (5)
F̃ (6)
F̃ (7)



(4.1)

Figure 4.1 shows the flowgraph that is associated with equation (4.1). Note that for scaling
to half of the original size in equation (4.1) and figure (4.1), F (4) is not required anymore.
The multiplication by 2 can easily be done by a left shift and 5 of the constant factors can
be absorbed into the quantization values. In the two-dimensional case, the final scaling by√

2 (and the division by 4 to get the average value) can be reduced to a shift operation.
This leads to a total complexity of 5 multiplications, one left shift and nine additions, which
is better than an Arai-Agui-Nakajima DCT and taking the average of the values of adjacent
pixels.

97



CHAPTER 4. FAST IMAGE SCALING IN THE CONTEXT OF JPEG DECODING

F(0)

F(2)

F(6)

2 ·   2 · ( f (0 )+ f (1 ) )2

2(C  + C  )6 2

2(C  - C  )6 2

2(C  - C  )3 1

2(C  - C  )7 5

F(7)

2(-C  - C  )1 5

2(C  - C  )3 7

F(3)

2(C  + C  )3 7

2(C  - C  )5 1

F(5)

2(C  + C  )5 7

2(C  + C  )1 3

F(1)

2 ·   2 · ( f (2 )+ f (3 ) )

2 ·   2 · ( f (4 )+ f (5 ) )

2 ·   2 · ( f (6 )+ f (7 ) )

~

~

~

~

~

~

~

Figure 4.1: Flowgraph for the IDCT resizing to half of the original size, based on the
Loeffler-Ligtenberg-Moschytz Fast DCT

98



4.2.2. IMAGE SCALING IN THE IDCT PROCESS TO A FOURTH OF THE
ORIGINAL SIZE

F(0)

F(7)

F(3)

F(5)

F(1)

2·(f(0)+ f(1)+ f(2)+ f(3))2

C  - C7 5

C  - C7 3

C  - C1 5

C + C1 3

2·(f(4)+ f(5)+ f(6)+ f(7))

~

~

~

~

~

Figure 4.2: Flowgraph for the IDCT resizing to a fourth of the original size, based on the
Loeffler-Ligtenberg-Moschytz Fast DCT

4.2.2 Image scaling in the IDCT process to a fourth of the original size

If we use the same technique as in section 4.2.1 to reduce the size of the IDCT process to a
fourth of the original size, this time to equation (4.1), we obtain the following matrix vector
product:

1
4

(
f(0) + f(1) + f(2) + f(3)
f(4) + f(5) + f(6) + f(7)

)
=

1
4
√

2
·
(

1 1
1 −1

)

·
(

2 0 0 0 0
0 C7 − C5 C7 − C3 C1 − C5 C1 + C3

)
·


F̃ (0)
F̃ (7)
F̃ (3)
F̃ (5)
F̃ (1)


(4.2)

Figure 4.2 shows the flowgraph that is associated with equation (4.2). Note that for scaling
to the fourth of the original size in equation (4.2) and figure (4.2), F (2) and F (6) are
not required anymore in addition to F (4). Again, in the two-dimensional case, the final
scaling by 4

√
2 (and the division by 16 to get the average value) can be reduced to a shift

operation. All 5 multiplicative constants can be completely absorbed into the quantization
factors resulting in a computational complexity of a mere 5 additions (the scaled values of
F (7), F (3), F (5) and F (1) can not be added within a single addition, as the single filled
dot suggests, but rather with 3 additions).

4.2.3 Image scaling in the IDCT process to an eighth of the original size

Applying the same technique as in sections 4.2.1 and 4.2.2 we can derive the trivial operation
of scaling to an eighth of the original image size during the decoding process. If we want to

99



CHAPTER 4. FAST IMAGE SCALING IN THE CONTEXT OF JPEG DECODING

take the average of 8 adjacent pixels we simply have to add the two lines of the first matrix
in equation (4.2):

1
8
(
f(0) + f(1) + f(2) + f(3) + f(4) + f(5) + f(6) + f(7)

)
=

1
8
√

2
·
(
2 0

)

·
(

2 0 0 0 0
0 C7 − C5 C7 − C3 C1 − C5 C1 + C3

)
·


F̃ (0)
F̃ (7)
F̃ (3)
F̃ (5)
F̃ (1)

 =
1

2
√

2
· F̃ (0)

(4.3)

In the two-dimensional case, for an 8 × 8-block of pixels, this simply means dividing the
DC-value by 8.

100



Chapter 5

The JPEGLib

Life’s most urgent question is: What are you doing for others?

– Martin Luther King

I never see what has been done; I only see what remains to be done.

– Madame Curie

The JPEGLib is a software library that is written and maintained by the Independent
JPEG Group (IJG). The Independent JPEG Group describes itself on its website

(http://www.ijg.org) as “an informal group that writes and distributes a widely used free
library for JPEG image compression”. The Independent JPEG Group has no real legal
status or form of organization, nor is the group affiliated in any way with the ISO committee
that is responsible for the standardization of JPEG. Maybe it can best be described as a
group of individuals that are loosely connected via an internet mailing list and their official
website, who voluntarily devote part of their time to the development and maintenance of
the JPEGLib library.

In the following we will first give some historic retrospect and the design goals of the
library. This will be followed by a short description of the capabilities of the library that will
show what the user of the library can expect from it. We will continue with a description
of the package content and a description of the processes involved in building the library.
This will include building the library for an already supported platform as well as porting
the library to a new platform as was the case in the project of this thesis. After that the
typical usage of the library and some architectural issues will be discussed, followed by a
summary of the author’s experiences with the library which will conclude this chapter.

This chapter is not at all meant to serve as a replacement for the documentation that
comes with the library package. The reader may consider this chapter as additional infor-
mation that could help clarify things while reading along in the official documentation and
more or less reflects the author’s experiences from working mainly with the decompression
part of the library. As an anticipation of the summary at the end of this chapter, the author
could not find any serious flaws in the library, although there are some minor issues that
could help improve performance and integratability of the library.

101

http://www.ijg.org


CHAPTER 5. THE JPEGLIB

5.1 Goals, Motivation and History

The IJG started their work on a library for JPEG compression and decompression at the end
of 1990, at least this is what the earliest mailing list archive (http://www.ijg.org/archives)
file suggests1. The initial goals of the group can be summarized by quoting from one of
the earliest postings of Thomas G. Lane of Carnegie-Mellon University, moderator and
organizer of the group:

“. . . I see the main technical issues as:
1. Making it work (getting the algorithms right);
2. Making it portable (avoiding system dependencies);
3. Making it fast.”

or more seriously, by quoting from the current version’s readme file:

“The emphasis in designing this software has been on achieving portability
and flexibility, while also making it fast enough to be useful. In particular, the
software is not intended to be read as a tutorial on JPEG. [. . . ] Rather, it is
intended to be reliable, portable, industrial-strength code.”

Another quote from Lane, this time from a usenet newsgroup posting in comp.graphics,
alt.graphics.pixutils and other newsgroups from January 23rd of 1991, is sort of a “mission
statement” and puts things a bit more into the historical context of 1991:

“. . .We recognize that the net is not going to adopt any new posting format
unless free or very inexpensive software is available for a wide variety of ma-
chines. We hope that we can cover enough machines to let JPEG reach “critical
mass” and become a de-facto standard on Usenet. Once that happens, people
with unusual hardware can adapt our source code to run on their machines.
Another reason for our work is to encourage compatibility. The draft JPEG
standard is an extremely loose document: a large number of decisions are left
up to the individual implementor. People working in isolation are likely to pro-
duce implementations that can’t actually exchange JPEG-format files. [. . . ] By
making and giving away a high-quality implementation, we hope to establish a
de-facto standard for JPEG file format and to provide a painless path for people
to adhere to that particular interpretation of the JPEG standard.”

Lane’s hope of the JPEGLib to “become a de-facto standard on Usenet” did not only come
true, more important, with the Web revolution in the mid of the nineties, the JPEGLib
became the de-facto standard for the World-Wide-Web. All major browser vendors up to
now use the code from the IJG for rendering JPEG images, including Netscape, the Mozilla
Project and Microsoft. Many other software packages such as Ghostscript, the libtiff library
and numerous file conversion utilities use the IJG’s JPEGLib as well. One reason for this,
besides from the exceptional quality, stability and performance of the code, are the very
modest licensing requirements which only require that the accompanying documentation
must state that “this software is based in part on the work of the Independent JPEG Group”
if only executable code is distributed that makes use of the JPEGLib. Traditionally, the

1Note that this is actually more than one year prior to JPEG becoming an international standard, see
section 2.1.

102

http://www.ijg.org/archives


5.2. CAPABILITIES OF THE JPEGLIB

Version Date Description

1 10/07/1991 First version, only JPEG baseline and extended-sequential
compression processes supported, no progressive mode.

2 12/13/1991 Inclusion of config.c (later renamed to ckconfig.c), see section
5.4, bugfixes and improved portability.

3 03/17/1992 “Swapping” memory manager, hooks for application UI re-
flecting progress, two-pass color quantization for the decoding
process, miscellaneous small speedups and bugfixes.

4 12/10/1992 Changes for improved accuracy, precision, speed and robust-
ness, bugfixes and name changes.

4a 01/18/1993 Bugfixes and speedups.
5 09/24/1994 Almost complete redesign and rewrite: Image scaling by a

factor of 1/2, 1/4, or 1/8 during the decoding process, com-
plete change of the application programmer’s interface to the
library.

5a 12/07/1994 Better dithering and rounding, bugfixes.
5b 03/15/1995 Bugfixes, better documentation.
6 08/02/1995 Progressive mode support. New application “jpegtran” (see

section 5.3), small changes for application programmers.
6a 02/07/1996 Robustness (versioning) and notation improved, small

changes in internal structures.
6b 03/27/1998 Robustness improved, support for custom data in the com-

pression and decompression objects, markers can be pre-
served in memory.

Table 5.1: Revision History of the JPEGLib

copyright owner of the IJG’s code is Thomas G. Lane, because the group worried that a
statement like “copyright IJG” in the comments of the source code, with the IJG having
no real legal status, might be considered meaningless in a court of law if the IJG ever had
to try to enforce the copyright2.

Table 5.1 contains a short overview over the release history of the IJG’s JPEGLib, along
with information about important changes.

5.2 Capabilities of the JPEGLib

The JPEGLib is a library written entirely in C that implements JPEG compression (en-
coding) and decompression (decoding)3. The supported JPEG modes of operation (see
section 2.2.3) are the DCT-based sequential mode, in particular the baseline process, and
the progressive mode of operation with incremental decoding for on-the-fly display of pro-

2Today, with open-source copyrights pretty well understood, a lot of those early worries of the IJG seem
pointless in retrospect.

3Additionally, there are some assembler files available, either to make the library work on some platforms
(MS-DOS) or in order to speed up critical operations.

103



CHAPTER 5. THE JPEGLIB

gressive images. The lossless and hierarchical modes of operation are not supported by the
JPEGLib. As described in section 2.2, the JPEG standard does not fully specify an inter-
changeable file format, therefore the JPEGLib follows the JFIF file format ([11]) which was
introduced in section 2.3. The JPEGLib also does not support arithmetic coding, since this
is subject to several patents. Instead, Huffman encoding and decoding is implemented in
a very close way to the coding propositions of the JPEG standards document ([5]). There
are three different DCT implementations for both the FDCT and IDCT that are runtime
options: a slow but accurate floating-point variant using the Arai-Agui-Nakajima DCT (see
sections 3.3.6 and 3.3.7), a faster yet slightly less accurate fixed-point variant using the
Loeffler-Ligtenberg-Moschytz DCT (see sections 3.3.3 and 3.3.4), and a fast but much less
accurate fixed-point variant using the Arai-Agui-Nakajima DCT. Additionally, specialized
fixed-point algorithms based on the Loeffler-Ligtenberg-Moschytz DCT allow downscaling
to the half, a fourth or to an eighth during decoding as described in sections 4.2.1, 4.2.2
and 4.2.3. The JPEGLib is both able to support 8 bit and the rarely used 12 bit sample
data precision, but not simultaneously, since this is a compile-time decision. In addition to
decoding into a 24-bit color format, the JPEGLib also contains a color decoding backend
that can create dithered output, using ordered dithering or Floyd-Steinberg dithering (see
also [10], [12], [16], [24] and [28]).

5.3 The JPEGLib package content

The JPEGLib source code and documentation comes as a compressed file that can be
downloaded from http://www.ijg.org/files/. The most current version at the time of writing
is version 6b, dating from March 27th of 1998, and can be found at the aforementioned URL
as the file jpegsrc.v6b.tar.gz. If this archive is unpacked, the files created can be roughly
categorized into the following 3 groups (see also the file filelist.doc that comes with the
library): JPEGLib core, sample applications and documentation. A detailed description of
every file’s purpose can be found at the beginning of each source file. A brief description of
all files can be found in the file filelist.doc. As a simple file naming convention, every source
and header file of the JPEGLib core starts with a “j” and the character following it in most
cases denotes the part to which this module belongs: If it is a “c”, the module belongs to the
compression/encoding part, if it is a “d”, the module belongs to the decompression/decoding
part of the library. Before a successful build of the library can be made, the library has
to be adapted to the specific environment where it is to be used. See section 5.4 and the
JPEGLib’s file install.doc for more information on this topic.

When compiled successfully, a file named libjpeg.lib (the name may differ for different
platforms or custom makefiles) and 3 sample applications are created whose purpose is
described as follows:

• cjpeg: A command-line utility to create JPEG files from different bitmap source
formats.

• djpeg: A command-line utility to create different bitmap destination formats from a
JPEG source file.

• jpegtran: A command-line utility for lossless transcoding from JPEG source files into
JPEG destination files of different formats.

104

http://www.ijg.org/files/


5.4. ADAPTING THE JPEGLIB TO DIFFERENT PLATFORMS AND COMPILERS

5.4 Adapting the JPEGLib to different platforms and
compilers

As laid out before, the JPEGLib was written with portability across different environments
in mind. This includes different computer architectures, operating systems and compilers.
To account for these different environments, all compile-time relevant settings are collected
in one header file (jconfig.h) and are also reflected in the proper use of a suitable makefile.
Proper use means here: The correct makefile has to be identified (or adapted from existing
ones) and edited to choose the correct memory manager for the environment in question.

5.4.1 Determining the correct jconfig.h file and the correct makefile

For popular non-Unix environments, preconfigured makefiles and header files are already
supplied, so making the JPEGLib ready to be successfully compiled takes only two steps:
Renaming the right variant of jconfig.* to jconfig.h and renaming the right version of make-
file.* to makefile (e.g. on a Win32 based system for the Microsoft C compiler, jconfig.vc is
to be renamed to jconfig.h and makefile.vc is to be renamed to makefile). After that step,
the JPEGLib is ready to be compiled by a make tool (i.e. the “nmake” tool in the afore-
mentioned case of a Win32 based system and a Microsoft C compiler). This way, the most
important (and also some historical) non-Unix environments are covered, such as Amiga,
Apple Macintosh, Atari ST, Digital VMS, Borland C on MS-DOS and OS/2, GNU C on
MS-DOS, Microsoft C for MS-DOS and Win32 platforms, Watcom C on MS-DOS, Win32
platforms and OS/2.

In the case of a Unix-like environment, the GNU C compiler is required and the two
files are created by a shell script (configure).

For the not so popular environments like the one covered in this thesis, a tool can be
built that creates the jconfig.h file. For this purpose, the file named ckconfig.c needs to be
successfully compiled into an executable. Running the executable then creates the jconfig.h
file. For the creation of jconfig.h, ckconfig.c works with some heuristics to determine the
correct values for the jconfig.h file to be created. If the compilation of ckconfig.c fails, fixing
the cause of this error in ckconfig.c finally yields the correct result in the jconfig.h file to
be created. This way, a successful compilation of ckconfig.c finally creates a jconfig.h file
for the JPEGLib that is suitable for the environment under which ckconfig.c is compiled,
and thus correct compile-time constants can be used for making the JPEGLib library. The
compile-time constants mostly include properties of the compiler and Operating System
(OS) in use, such as:

• Does the compiler or the OS use a flat memory model?

• Does the compiler use function prototypes?

• Does the compiler have the “boolean” data type?

• Does the compiler have unsigned variants of the char and short data type?

• Does the compiler use an unsigned right shift?

Since ckconfig.c creates a file, its usage is a bit problematic for embedded systems, where
there typically is no file system available. In the case of this thesis, the code of ckconfig.c

105



CHAPTER 5. THE JPEGLIB

File name Description

jmemansi.c Swaps out data to unnamed temporary files using the ANSI
standard library routine tmpfile().

jmemname.c Swaps out data to named temporary files.
jmemnobs.c Doesn’t swap out data to files(“nobs” in jmemnobs stands

for “No backing store”), relies on enough main or virtual
memory. Should compile on all platforms.

jmemdos.c Customized memory manager for MS-DOS.
jmemdos.c Customized memory manager for the Apple Macintosh.

Table 5.2: Memory manager implementations supplied by the JPEGLib

was adapted to transmit the file content over the serial line, where it could be captured by
a program running on the development system.

In very rare cases, such as the embedded system being used throughout this thesis, a
second header file, jmorecfg.h, needs to be adapted as well. In this file it is determined,
among other things, what the preprocessor will evaluate for the pseudo-keyword FAR, that
is used within the JPEGLib for segmented architectures, like MS-DOS. Using this pseudo-
keyword, different pointer arithmetics can be done on such platforms.

For a suitable makefile for the not so popular environments, two generic makefiles (make-
file.ansi and makefile.unix) are provided as starting points for ANSI compliant compilers
and compilers without function prototype support. In the case of this thesis, makefile.ansi
was choosen and adapted for the usage with the Cygnus port of the GNU make utility for
Win32.

5.4.2 Choosing the right memory manager

The makefile for the JPEGLib always contains a variable named SYSDEPMEM which is
assigned a value of one object file that contains the implementation of a memory manager.
A memory manager for the JPEGLib assures that even on platforms with segmentation,
such as MS-DOS or on systems with little memory, JPEG files can be encoded or decoded
successfully, even if the images are much bigger in size than the available memory of the
system.

There are 5 different memory manager implementations provided with the JPEGLib
which are implemented in the files given in table 5.2. If none of these memory managers
fits for a particular purpose, a custom one can be written for a particular environment or
an existing one can be adapted, as was the case with this thesis. Also, the SYSDEPMEM
variable in the makefile needs to be changed such that it points to the object file associated
with the desired memory manager implementation.

Reasons for employing a memory manager scheme instead of the the näıve use of the
standard C-Runtime function malloc at all places where memory needs to be allocated
dynamically, can be the following:

• On some systems, particularly segmented architectures such as MS-DOS or the em-
bedded system used throughout this thesis, malloc simply sometimes cannot allocate

106



5.5. USAGE AND ARCHITECTURAL ISSUES

large enough memory buffers4 and therefore cannot always satisfy the requirements
of the caller.

• On some systems, OS system calls or calls into heap managers, e.g. when used in mul-
tithreaded and SMP environments on more than one CPU, are much more efficient
than the standard C-runtime allocator malloc.

As a result, the JPEGLib’s memory manager uses two different allocator/deallocator func-
tion pairs throughout its own code. The first one is jpeg get small and jpeg free small, which
are used for small blocks of memory. For bigger blocks of memory, the jpeg get large and
jpeg free large functions are used5. Another advantage of the JPEGLib’s particular imple-
mentation is, that all dynamic memory allocation that happens during encoding or decoding
of one image is tracked in so-called “memory pools” that are associated with the compres-
sion or decompression object6 and thus per-image data can be freed automatically in one fell
swoop after this process by invoking one single cleanup function (jpeg finish compress and
jpeg finish decompress). Also, all dynamic memory allocation that happens during encod-
ing or decoding per one compression or decompression object can be freed automatically by
invoking one single cleanup function (jpeg destroy compress and jpeg destroy decompress).
This way, the programmer does not need to bother about potential memory leaks inside
the library that could happen by not tracking all dynamically allocated memory.

5.5 Usage and Architectural Issues

This section will deal with a few design issues of the JPEGLib. The JPEGLib, though
written in C, follows a few object-oriented principles that are well worth being explained.
In particular this is inheritance, encapsulation via the usage of two fundamental composite
data types and polymorphism through function pointers. There are two reasons why the
developers of the JPEGLib preferred C over C++ for the implementation of their library:
First, in the beginning of the nineties of the 20th century, using C was the only feasible
choice for portable code and C++ was not yet well standardized. Secondly, the available
free C++ compilers were neither very good7 nor widely portable.

Another reason could be to have chosen C as the least common denominator, because
virtually all platforms have at least a more or less decent C compiler. This way also code
written in other languages can use the IJG’s code either directly (e.g. C++ via the extern
“C” keyword) or indirectly via dynamically linked libraries.

In the following we will first show what the typical code sequences are for encoding
and decoding and will then proceed to the encoder and decoder objects and show how
inheritance and polymorphism are achieved.

4The environment used throughout this thesis allows malloc to allocate only blocks up to a size of 214−1
bytes, generally malloc can only allocate 2sizeof(size t) − 1 bytes, because the formal parameter of malloc is
of type size t. For MS-DOS or the Win16 programming environment this is a mere 65535 bytes.

5A block allocated by jpeg get large also is a FAR pointer. Whether or not FAR is a special keyword
and thus actually implies a special way of doing pointer arithmetics or whether it is simply expanded by the
C preprocessor to nothing, depends on settings made in jconfig.h and jmorecfg.h.

6Compression and decompression in the JPEGLib involves a compression/decompression object that can
be reused for subsequent encoding or decoding processes of different images, see section 5.5.3.

7Even at the time of writing, C++ compiler implementations seem to be inherently flawed, whereas
writing good and efficient C compilers is a well researched topic for more more than 30 years.

107



CHAPTER 5. THE JPEGLIB

5.5.1 Typical code sequences for encoding

This section will show how typical code sequences will look like for the application developer
who wants to use the encoding part of the JPEGLib from within his code. We will adapt the
pseudocode-like approach that is used in the library’s libjpeg.doc file and we will comment
on the involved steps.

For the compression of images, the outline of the involved operations is as follows:

• Allocate and initialize a JPEG compression object.

• Specify the destination for the compressed data (e.g. a file).

• Set parameters for compression, including image size and colorspace.

• Call jpeg start compress(. . . );

• Do the following loop:
while (scan lines remain to be written)

jpeg write scanlines(. . . );

• Call jpeg finish compress(. . . );

• Release the JPEG compression object.

The first step, allocating a JPEG compression object, is usually done by allocating it on
the stack, as an automatic variable. The size of such an object of type jpeg compress struct
on a 32-bit system is typically 360 bytes8, therefore on systems where the stack is a scarce
resource because it has to fit into a single address segment of the microprocessor9, allocating
it on the stack could be a problem10. The initialization of the compression object is done by
allocating an error manager object (jpeg error mgr) on the stack, assigning its address to a
member of the compression object and by calling the macro jpeg create compress. The error
object11 specifies the amount of diagnostic output during encoding via a so-called “Trace
Level”. It also contains function pointers as structure members that point to routines for
emitting and formatting error and diagnostic messages12.

In case a JPEG file should be created, specifying the destination for the compressed
data is especially easy: Simply jpeg stdio dest needs to be called with a FILE* that was
opened for writing. In case the JPEG data should have a different destination, e.g. should
be transmitted over a serial line or written into memory or a memory-mapped-file, a so-
called “destination manager” needs to be written. The interested reader will find more
information about this in the JPEGLib’s libjpeg.doc file.

Setting the parameters for compression consists merely of assigning values to members
of the compression object and calling the JPEGLib’s core function jpeg set defaults, which

8284 bytes on the embedded system in use throughout this thesis.
9This is a problem for operating environments such as MS-DOS, Win16 or the system used throughout

this thesis.
10In such cases the object must be allocated dynamically, i.e. via malloc. In this case, the programmer is

also responsible for releasing the object to the heap after usage.
11The error object can be tailored to one’s own needs since a prototype is defined in the header file

jpeglib.h. This way the default function pointers can be overridden with pointers to own functions.
12These messages usually come from a hardcoded message table, see jerror.h.

108



5.5.2. TYPICAL CODE SEQUENCES FOR DECODING

sets all members of the compression object to reasonable default values. Input colorspace
is set via the functions jpeg default colorspace or jpeg set colorspace13.

After calling jpeg start compress, a loop over all input scanlines must be performed,
each time calling jpeg write scanlines with a pointer to a buffer of one or more lines of the
input image as the parameter.

A call to jpeg finish compress will now clean up all per-image data of the compres-
sion object and a call to jpeg destroy compress will finally clean up all per-object data of
the compression object. If the compression object was allocated on the stack, it will be
automatically released by leaving the current stack frame.

5.5.2 Typical code sequences for decoding

This section will show how typical code sequences will look like for the application developer
who wants to use the decoding part of the JPEGLib from within his code. Again, we
will adapt the pseudocode-like approach from the library’s libjpeg.doc file and we will
comment on the involved steps. For the decompression of images, a similar scheme to that
of compression is used. The outline of the involved operations is as follows:

• Allocate and initialize a JPEG decompression object.

• Specify the source of the compressed data (e.g. a file).

• Call jpeg read header() to obtain image information.

• Set parameters for decompression.

• Call jpeg start decompress(. . . );

• Do the following loop:
while (scan lines remain to be read)

jpeg read scanlines(. . . );

• Call jpeg finish decompress(. . . );

• Release the JPEG decompression object.

The first step, allocating a JPEG decompression object, is usually done by allocating it
on the stack, like the compression object in section 5.5.1. The size of such an object of
type jpeg compress struct on a 32-bit system is typically 432 bytes14, so again, allocating
it on the stack can be a problem in some environments. Similar to the steps involved
in compression, initialization of the decompression object is done by allocating an error
manager object on the stack, assigning its address to a member of the decompression object
and by calling the macro jpeg create decompress.

In case the source of compressed data is a file, the second step is quite easy: All that
needs to be done is to supply a FILE* to a file that was opened for reading to the function
jpeg stdio src. In case JPEG data is in memory like it was the case in the project of this
thesis or is transmitted in pieces via the serial line, a so-called data source manager has to
be written for this purpose (see also the documentation in the JPEGLib’s file libjpeg.doc).

13Possible input color spaces are grayscale, YCbCr, RGB, CMYK, YCCK.
14338 bytes on the embedded system in use throughout this thesis.

109



CHAPTER 5. THE JPEGLIB

The next step, calling jpeg read header, obtains useful information such as image re-
solution and color space. This is particularly useful if memory is limited as it was in the
project of this thesis. At this point the decision was made whether to downscale the picture
in the decoding process to half, to a fourth or to an eighth. In any case, knowing the hori-
zontal resolution of the image allows the allocation of big-enough buffers for the line-by-line
processing in the while-loop that follows.

Setting parameters for decompression involves specifying which IDCT variant should be
used or whether dithering should be used for color-quantized output.

After the call to jpeg start decompress, the while-loop is started and one or more line
buffers are passed with each call to jpeg read scanlines for decoding the image line by line
or several lines at once per call to jpeg read scanlines.

Like in the encoding process, a call to jpeg finish decompress will now clean up all per-
image data of the decompression object and a call to jpeg destroy decompress will finally
clean up all per-object data of the compression object. If the decompression object was
allocated on the stack, it will be automatically released by leaving the current stack frame.

5.5.3 The encoder and decoder objects

The encoder and decoder objects are composite data types that are defined in the header
file jpeglib.h. A composite data type in the C programming language is called a “struct”.
A struct is similar to a class in C++ in that it supports some sort of encapsulation, but
it does not support access specifiers like private, protected or public as in C++ or Java.
A struct in C also has no notion of member functions15, let alone polymorphism, which is
achieved in C++ through virtual member functions and is the default in Java. Also, C does
not provide a builtin way to derive one struct from another to achieve inheritance. We will
see in the following, how the designers and implementors of the JPEGLib achieved these
fundamental principles of object-oriented design in C nevertheless:

The encoder and decoder objects both share a set of identical members which are at
the beginning of the binary layout of each object. This allows a pointer to a compression
or decompression object to be cast into a pointer to a struct jpeg common struct, which
contains only those common members. This is an effective way of introducing inheritance
in C and allows quite a lot of functions to operate on both encoder and decoder objects.
If this were not the case, all the functions that take a pointer to a jpeg common struct
would need to be duplicated: one variant for the compression object and another for
the decompression object. This way the structs for the encoder and decoder objects,
jpeg compress struct and jpeg decompress struct, can be considered to be derived from
the struct jpeg common struct.

Polymorphism in the JPEGLib is achieved in a very similar way to the way C++
achieves this with virtual functions. In C++, each object that is of a class that has virtual
functions or that is derived from a class with virtual functions, has a hidden member vari-
able that points to a table with function pointers, the so-called “virtual function table”.
The JPEGLib’s compression and decompression objects contain pointers to “managers” or
“subobjects” that are responsible for different tasks during encoding or decoding, such as
performing the DCT, performing entropy encoding or decoding, color-conversion, upsam-
pling or downsampling, etc. These “managers” in turn are again composite data types,

15Member functions are also often called “methods”.

110



5.6. SUMMARY

but most of them (see the header file jpegint.h) contain only function pointers and thus
have the same functionality as the aforementioned virtual function tables16. By assigning
these function pointers different values, the functionality of the managers can be changed
without changing the binary layout of the compression and decompression objects. For
instance, selection of one of the three possible DCT variants per object consists of assigning
one out of three functions with identical signature to the function pointer struct member
of the subobject that is responsible for doing the discrete cosine transform. Also, complete
managers can be replaced by custom managers, as long as the binary layout of the standard
manager is a subset of the custom manager, i.e. if the standard manager is of size n bytes,
the custom manager must be at least of size n bytes and the first n bytes of both managers
must have the same meaning. This again, is nothing else than the concept of inheritance.

5.6 Summary

As a summary, the JPEGLib can be considered a modular and object-oriented library that
uses very elegant ways to achieve the fundamental principles of object-orientation despite
the fact that the C programming language has no intrinsic language support for these. In
addition, by using subobjects within the two main types of objects for compression and
decompression, there is no deep hierarchy of inheritance, which circumvents the problem
of “fragile base classes” as it is often encountered in deeply nested C++ class hierarchies
with overuse of polymorphism. Since the focus of this thesis was on the decoding part, this
summary also only covers the author’s experiences with this part of the library.

It turned out that the JPEGLib was the right choice for the purpose of decoding JPEG
files on the embedded system used throughout the project of this thesis. The fact that the
library was written with a high degree of portability in mind made porting much easier.
Especially the carefully written code parts for MS-DOS that via the pseudo-keyword FAR
allow different pointer arithmetics where this is necessary, made it possible to overcome
the limitations imposed by the segmentation of the microcontroller’s address space17. Also
the modular architecture of the library made it possible to adapt for the requirements of
this thesis’ project by using a custom data source manager that reads JPEG data from
main memory while accounting for the segmented architecture of the controller’s address
space. Little effort was required to exchange other parts of the library by assigning new
functions to the function pointers of various subobjects of the decompression object or even
by replacing complete subobjects with custom implementations.

Nevertheless a few observations could be made about potential improvements of the
library:

• The algorithms for the downscaled IDCTs to half and especially to a fourth of the
original image’s size (see sections 4.2.1 and 4.2.2) can be improved drastically by
absorbing the multiplicative factors for the dequantized DCT coefficients into the
quantization tables. This way, e.g. for downscaling to a fourth, only additions are
required and 5 multiplications per one row or column IDCT can be saved. Maybe
the code of the JPEGLib uses these multiplications deliberately, because this way

16This concept is also known as the concept of Abstract data types. The parallels to “interfaces” as they
are used in CORBA, COM or Java is obvious.

17The microcontroller used throughout this thesis has a memory architecture that partitions the address
space into so-called “pages” of size 214 bytes.

111



CHAPTER 5. THE JPEGLIB

better accuracy is achieved. But maybe it was just an oversight that the multiplicative
constants like in the JPEGLib’s implementations of the Arai-Agui-Nakajima DCT can
be absorbed into the quantization table. At least for a few test images, no noticeable
difference could be found when using this optimization.

• The JPEGLib employs the row- and columnwise approach for all variants of the DCT.
The following comment from the source code appears in a similar form in all modules
that deal with the calculation of the DCT:

“A 2-D DCT can be done by 1-D DCT on each row followed by 1-D
DCT on each column. Direct algorithms are also available, but they are
much more complex and seem not to be any faster when reduced to code.”

The author considers this statement to be very questionable, since e.g. Feig’s algo-
rithms for the scaled 2D FDCT and IDCT as described in sections 3.4.3 and 3.4.4
require significantly less computational effort. A potential obstacle however for using
Feig’s algorithms in the JPEGLib could arise from patent issues: There is an indica-
tion in Feig’s original article ([8]), that these algorithms are included in a U.S. patent
application. Patent recherche showed that only one patent (patent number 5293434)
was granted to Feig (and Pennebaker, one of the authors of [22]), that explicitly deals
with the 2D DCT, and it is unclear to the author whether it actually uses Feig’s 2D
DCT as described in sections 3.4.3 and 3.4.4. Also: This patent was filed in 1991,
Feig’s original article ([8]) dates back to 1990 and states that the patent was already
filed way back in 1989.

• For an embedded system it makes no sense to have diagnostic messages or error
messages during decoding an image, because there is no command prompt or other
means for displaying such output. There are only two alternatives: either decoding
succeeds or it fails, in which case it is sufficient to show to the user that there was
a problem, but not which problem. Therefore it would have been a good idea if the
implementors of the JPEGLib had made diagnostic and error output a compile-time
option. In the case of this thesis, some measurable improvement could be made by
simply expanding the macros WARNMS,TRACEMS, . . . in the header file jerror.h to
nothing. Further improvement could probably be made by incorporating both the
condition check for a diagnostic message and the ID for the diagnostic message into
a macro which simply expands to nothing if this compile-time option is not used.
This way those applications that use diagnostic output could continue to use it, while
for others both the condition check and the diagnostic output could be completely
omitted, resulting in higher performance. It could be argued, that users should write
their own error handling code, but including this into the default error handler would
not hurt and would relieve users from tinkering with an own error handler.

• Even in the case that errors and warnings and other diagnostic output is desired,
the suggestion in libjpeg.doc under “Error handling” to override some of the method
pointers in the jpeg error mgr struct after calling jpeg std error() is not really helpful
as to internationalization and localization. Even in this case, error messages still come
from the file jerror.h as ANSI strings in plain English. But not all the world is English
and in the age of UNICODE, ANSI strings more and more appear to be some sort
of an anachronism. Again it could be argued, that users should write their own error

112



5.6. SUMMARY

handler, but few if any users will probably do this. Most users will probably stick
with the hardcoded error messages from jerror.h in ANSI and plain English, therefore
the author’s view is, that the default error manager should be made more flexible and
extensible to account for the aforementioned issues.

• Overuse of macros: During the phase of porting the JPEGLib to the microcontroller
used during this thesis, an occasional error occurred during the decoding process in
the macro HUFF DECODE in the source file jdhuff.c. The macro HUFF DECODE
turned out to be the following monster (see header file jdhuff.h):

#define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \

{ register int nb, look; \

if (bits_left < HUFF_LOOKAHEAD) { \

if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \

get_buffer = state.get_buffer; bits_left = state.bits_left; \

if (bits_left < HUFF_LOOKAHEAD) { \

nb = 1; goto slowlabel; \

} \

} \

look = PEEK_BITS(HUFF_LOOKAHEAD); \

if ((nb = htbl->look_nbits[look]) != 0) { \

DROP_BITS(nb); \

result = htbl->look_sym[look]; \

} else { \

nb = HUFF_LOOKAHEAD+1; \

slowlabel: \

if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \

{ failaction; } \

get_buffer = state.get_buffer; bits_left = state.bits_left; \

} \

}

Note that the author does not object against the coding style of this snippet or the
usage of “goto”18, it simply is impossible to debug something like that19. In addition,
PEEK BITS and DROP BITS used in this macro are again macros. This code had to
be expanded manually by the author of this thesis in order to find and fix the error.

It can be considered a matter of taste or performance whether this code should rather
be a function or a macro. If performance is the reason for implementing it as a macro,
the author of this thesis would probably have written this as normal code instead of
a macro, given the fact that this macro is invoked only 6 times.

18Despite the doctrine “goto considered harmful” ([7]), goto is the right choice when it comes up to
performance as in this library or in C-runtime libraries.

19The C preprocessor expands the whole macro to a single line.

113



Chapter 6

JPEG Decoding on the Micronas
SDA 6000 Controller

Don’t you know you fool, you never can win?
Use your mentality, wake up to reality.

– From the song “I’ve got you under my skin” by Cole Porter
(from the movie “Born To Dance”, 1936)

This chapter contains the results of the project pursued throughout this thesis. For
the maintainer of the code base that was developed, it contains a description of the

projects used for decoding on the SDA 6000 controller as well as a detailed description of the
changes to the JPEGLib, that were required to make the JPEGLib run on this hardware.
The aim of these sections is to give the maintainer of the source code explanations to the
code changes and they can be probably best understood while using a tool that shows the
differences between the standard JPEGLib, as distributed by the IJG, and the code written
throughout this thesis. Following this will be a section that explains the changes to the
JPEGLib for a modified version of the IDCT algorithm that scales the image to a fourth,
as suggested in section 4.2.2. The sections following this are descriptions of the custom
managers that were written to replace parts of the JPEGLib. and finally an overview of
the actual performance that is possible with the SDA 6000 controller.

6.1 Project descriptions

The controller being used throughout this thesis is the SDA 6000 from Micronas, Munich.
The controller’s code name during its development was “M2” and this name has been
retained until the time of writing, even in official documentation. Therefore and for the
sake of brevity, we will use the controller’s code name in the following.

For the decoding of JPEG files on the M2, two projects exist that can both be used for
further development. Both projects compile cleanly without any warnings or errors in the
highest warning level, besides from third-party code. Both require the toolchain “TASKING
C/C++ for C166/ST10 v7.0 r1” from Tasking Inc. and reside under the corporate-wide
prescribed directory d:\work in separate directories:

114



6.2. CHANGES TO THE JPEGLIB

• Under d:\work\ae7 a project can be found that initially served as the starting point in
that it contained routines for drawing on the TV screen with the primitives from the
Graphics Device Interface (GDI) of the M2. This project was mainly used during the
phase of porting the JPEGLib to the M2. In this project, the JPEG decoder part is
running concurrently with other processes under the real-time operating system OSE.
The associated project file can be found under d:\work\ae7\as the file AE7.psp. The
binary that is created by a successful build of this project is the file ae7.out in the
same directory. After the need was encountered to abandon the operating system for
performance reasons, this project was superseded by the second project.

• The second project is located under d:\work\mini and emerged from an OS-less
project, named “warmup” that was provided courtesy of Micronas, the manufacturer
of the M2. This project allows the JPEG decoder to run at maximum performance
as a single task on the M2 without any underlying OS. Additionally, it can be com-
piled to use either the standard GDI for the M2 in 4-4-4 mode or the experimental
“MINI GDI”1 that switches the M2 into 5-6-5 mode. The associated project file can
be found under d:\work\mini\target\warmup\Tasking as the file Warmup.pjt. The
binary that is created by a successful build of this project is the file warmup.out in
the same directory.

Both projects are built via the Integrated Development Environment that ships with the
toolchain.

6.2 Changes to the JPEGLib

Both projects use the same copy of the JPEGLib which was slightly modified during
the porting phase to adapt to this previously unsupported platform. This variant of the
JPEGLib can be found in the following directory:
d:\work\ae7\V601 EvalBoard\FunctionLibrary\Functions\jpeglib.
The binary image of the library itself is the file libjpeg.lib. In order to successfully build
the library a command console must be started and the current directory must be changed
to this directory, followed by invoking “make”. The suggested make utility comes from
the Cygnus port of the GNU compiler for Win32. A custom jconfig.h was created from
ckconfig.h and the library’s makefile.ansi was modified and used as the library’s makefile
as described in section 5.4. The JPEGLib had to be modified at surprisingly few places in
order to run on the M2. In order to get it compiled, actually no changes were required.
However, it turned out that the standard memory manger (memnobs.c) could not allocate
large enough blocks, so it was modified accordingly. The following changes to the memory
manager were required:

• Two global function pointers were introduced that have identical function signatures
to the standard allocator/deallocator pair malloc and free in jconfig.h:

#include <stdio.h> //for definition of data type size_t

typedef void* (*memalloc)(size_t);

extern memalloc g_fnMemAlloc;

1The MINI GDI library was supplied halfway through during this thesis from Tara Systems, the vendor
for the official GDI. For information on how to work with it see [17].

115



CHAPTER 6. JPEG DECODING ON THE MICRONAS SDA 6000 CONTROLLER

typedef void (*memfree)(void *);

extern memfree g_fnMemFree;

The implementation and initialization of these global function pointers can be found
in the modified variant of jmemnobs.c:

memalloc g_fnMemAlloc = NULL;

memfree g_fnMemFree = NULL;

• A custom implementation of jpeg get large and jpeg free large (see section 5.4.2) was
made in jmemnobs.c:

GLOBAL(void FAR *)

jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)

{

if (g_fnMemAlloc)

return (void FAR *) g_fnMemAlloc(sizeofobject);

else

return NULL;

}

GLOBAL(void)

jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)

{

if (g_fnMemFree)

g_fnMemFree(object);

}

By using these function pointers, the actually used allocator could be set from outside.
This happens in the files GraphicsDemo.cpp under
d:\work\ae7\V601 EvalBoard\FunctionLibrary\Functions\jpeg\Src and in the file
startup.c under d:\work\mini\target\warmup\Source where these function pointers
are assigned the addresses of the functions MemoryAlloc and MemoryFree whose im-
plementation can be found in the file memalloc.c in the directory
d:\work\ae7\V601 EvalBoard\FunctionLibrary\Functions\jpeg\Src.

The implementations of MemoryAlloc and MemoryFree are as follows:

void * MemoryAlloc (size_t st)

{

XHandle h = GdiAllocMemory(st+sizeof(XHandle), 0x80, GDI_ALLOC_USE_GAPS);

if (GDI_NULL_HANDLE != h)

{

unsigned char huge *lp = (unsigned char *)GdiLockMemory(h);

memcpy((void *)lp, (void *)&h, sizeof(XHandle));

lp = &lp[sizeof(XHandle)];

return (void *)lp;

}

else

return NULL;

}

116



6.2. CHANGES TO THE JPEGLIB

void MemoryFree (void *p)

{

XHandle x;

unsigned char huge *lp = (unsigned char *)p;

lp -= sizeof(XHandle);

x = *((XHandle *)lp);

GdiUnlockMemory(x);

GdiFreeMemory(x);

}

MemoryAlloc allocates with the help of the GDI routines (which can allocate much more
memory than the standard allocator malloc) memory that is exactly the size of an XHandle
larger than required. The memory handle that is returned from the library is then locked
and the value of the memory handle is written at the beginning of this piece of locked
memory. The address that starts after this location is then returned to the caller and
is exactly the size the caller requested. MemoryFree first determines the address where
the value of the associated handle can be found by decrementing the supplied address by
sizeof(XHandle), stores this value in a temporary variable and unlocks and releases the
memory via this variable. With this scheme via function pointers, the GDI library can lend
its capability to allocate big amounts of memory to the JPEGLib without the necessity to
merge these libraries or make them too dependent on each other. In order for the JPEGLib
to account for the segmented architecture of the M2, jmorecfg.h had to be changed as well
so the pseudo-keyword FAR is replaced by the C preprocessor with “huge”:

#ifdef NEED_FAR_POINTERS

#define FAR huge

#else

#define FAR

#endif

Of course, for this to work, NEED FAR POINTERS in jconfig.h has to be defined as well:

#define NEED_FAR_POINTERS

Additionally, the JPEGLib needs a primitive for copying data blocks, taking into account
the segmented architecture of the M2. This is done by specifying the macro FMEMCOPY
in jconfig.h:

#define FMEMCOPY(dest,src,size) memcphhb((void huge *)(dest), \

(const huge FAR *)(src), (size_t)(size))

The function memcphhb is a variant for the standard C-runtime function memcpy that
takes “huge Pointers” as arguments, thus it does 32-bit pointer arithmetics instead of the
M2’s standard 14-bit pointer arithmetics.

The real difficulty in getting the JPEGLib to work was to provide a custom data source
manager. Section 6.5 will elaborate on this topic. For now we will continue with the changes
made to the JPEGLib.

The JPEGLib employs a function (jzerofar) in jutils.c that initializes memory with ze-
roes. This can be either defined via a macro (FMEMZERO) as in the case of FMEMCOPY,
otherwise via a slow method that initializes the memory byte-by-byte with slow FAR pointer
arithmetics. For the M2 there is no runtime primitive for that purpose, a faster variant could
be found by separating the memory in pages and using faster standard pointer arithmetics:

117



CHAPTER 6. JPEG DECODING ON THE MICRONAS SDA 6000 CONTROLLER

GLOBAL(void)

jzero_far (void FAR * target, size_t bytestozero)

/* Zero out a chunk of FAR memory. */

/* This might be sample-array data, block-array data, or alloc_large data. */

{

#ifdef FMEMZERO

FMEMZERO(target, bytestozero);

#else

/* // Standard implementation. Slow, uses FAR ptrs:

register char FAR * ptr = (char FAR *) target;

register size_t count;

for (count = bytestozero; count > 0; count--) {

*ptr++ = 0;

*/

// We first determine the number of bytes that are left till the beginning

// of the next page in variable iRemainder. Then we zero out either bytestozero

// bytes (if bytestozero<iRemainder) and return, or we zero out the rest of the

// current page.

// At that point we set ptr to the beginning of the next page and decrement

// bytestozero by the number of bytes we already zeroed out. From this moment on

// iRemainder is always the size of one page (0x4000). Then we’ll start all over

// again the whole thing.

register char * ptr = (char *) target;

register unsigned int iRemainder = 0x4000 - ((unsigned int)ptr)%0x4000;

register size_t count;

for (;;)

{

if (bytestozero<iRemainder)

{

for (count = bytestozero; count > 0; count--)

*ptr++ = 0;

return;

}

else

{

for (count = iRemainder; count > 0; count--)

*ptr++ = 0;

}

target = (void FAR *)((char FAR *)target+iRemainder);

ptr = (char *) target;

// now ptr is exactly on the start of a new page.

bytestozero -= iRemainder;

iRemainder = 0x4000;

}

#endif

}

As the comment points out, this implementation first calculates the number of bytes until
the next page starts and zeroes out these or the maximum number of bytes. This can be
done with a normal pointer (as opposed to a huge pointer), because no page boundary is

118



6.2. CHANGES TO THE JPEGLIB

crossed. Then the pointer is assigned the address of the next page and again the number
of bytes until the next page or the maximum number of bytes are zeroed out until no more
bytes to zero are left.

In order to keep the binary as small as possible (and so compile and link cycles), several
options in the file jmorecfg.h were turned off2:

#undef DCT_FLOAT_SUPPORTED /* floating-point: accurate, fast on fast HW */

#undef C_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/

#undef D_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/

#undef SAVE_MARKERS_SUPPORTED /* jpeg_save_markers() needed? */

#undef BLOCK_SMOOTHING_SUPPORTED /* Block smoothing? (Progressive only) */

#undef QUANT_1PASS_SUPPORTED /* 1-pass color quantization? */

#undef QUANT_2PASS_SUPPORTED /* 2-pass color quantization? */

In the case of QUANT 1PASS SUPPORTED things are a bit complicated: For dithering,
this macro must be defined. For undithered output it is not required and has a negative
effect on performance. Enabling dithering is a compile-time option (see section ). The last
optimization to be done in jmorecfg.h is to define a data type for fast multiplication:

#ifndef MULTIPLIER

#define MULTIPLIER short /* type for fastest integer multiply */

#endif

For performance reasons, as described in section 5.6, diagnostic output was made a
compile time decision by introducing a macro DEBUG. In case DEBUG is defined, the
JPEGLib does normal diagnostic output, in case it is not defined, the macros WARNMS,
WARNMS1, WARNMS2, TRACEMS, TRACEMS1, . . . TRACEMS8 and TRACEMSS sim-
ply expand to nothing:

#define WARNMS(cinfo,code)

#define WARNMS1(cinfo,code,p1)

#define WARNMS2(cinfo,code,p1,p2)

#define TRACEMS(cinfo,lvl,code)

#define TRACEMS1(cinfo,lvl,code,p1)

#define TRACEMS2(cinfo,lvl,code,p1,p2)

#define TRACEMS3(cinfo,lvl,code,p1,p2,p3)

#define TRACEMS4(cinfo,lvl,code,p1,p2,p3,p4)

#define TRACEMS5(cinfo,lvl,code,p1,p2,p3,p4,p5)

#define TRACEMS8(cinfo,lvl,code,p1,p2,p3,p4,p5,p6,p7,p8)

#define TRACEMSS(cinfo,lvl,code,str)

In order to get diagnostic output during debugging over the serial line of the M2 board,
jerror.c was modified. Again a global function pointer (jprintffunc), this time with the
function signature of the well-known function printf was implemented as well as a function
for diagnostic output (jprintf). This function could either be called separately or from the
error managers output message function, which was modified to call jprintf:

2Besides from reducing the makefile to the decode part only.

119



CHAPTER 6. JPEG DECODING ON THE MICRONAS SDA 6000 CONTROLLER

#include <stdio.h>

#include <stdarg.h>

#ifdef JPRINTF

pprintf jprintffunc= NULL;

char szBuf [1024];

int jprintf ( const char * format, ... )

{

va_list arglist;

va_start(arglist, format);

vsprintf(szBuf, format, arglist);

if (jprintffunc)

return jprintffunc(szBuf);

else

return 0;

}

#endif

METHODDEF(void)

output_message (j_common_ptr cinfo)

{

#ifdef _DEBUG

char buffer[JMSG_LENGTH_MAX];

/* Create the message */

(*cinfo->err->format_message) (cinfo, buffer);

#ifdef USE_WINDOWS_MESSAGEBOX

/* Display it in a message dialog box */

MessageBox(GetActiveWindow(), buffer, "JPEG Library Error",

MB_OK | MB_ICONERROR);

#else

/* Send it to stderr, adding a newline */

#ifdef JPRINTF // we do a custom printf across the serial line for the M2

jprintf("%s\n", buffer);

#endif

#endif

#endif

}

Of course, for this to work, JPRINTF must be defined in jconfig.h and pprintf typedef’ed;

#define JPRINTF // jprintf function defined or not?

#ifdef JPRINTF //defined in jconfig.h

typedef int (*pprintf)(const char *);

extern pprintf jprintffunc;

int jprintf ( const char *, ... );

#endif

To make this diagnostic functionality actually work, the function pointer jprintffunc now
needs to be assigned a value of a function with a signature that resembles printf’s signature.
This is done in the file jdecode.c in the function JpegDecode. The actual implementation
of this function calls code that transmits the diagnostic output via the serial line of the M2
board to a monitoring program on the development computer via third-party code.

120



6.3. CHANGES FOR FASTER DOWNSCALING TO A FOURTH

A slight performance boost came from using the M2’s IRAM data for tables that are
used during Huffman decoding. By qualifying these tables with the keyword iram the
linker/locator puts them into IRAM:

int _iram extend_test[16] = /* entry n is 2**(n-1) */

{ 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,

0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };

int _iram extend_offset[16] = /* entry n is (-1 << n) + 1 */

{ 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,

((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,

((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,

((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };

The qualifiers “static” and “const” were removed, in order to verify that these tables actually
were created in IRAM address space via the map file. For experimental purposes in this
file also memory allocation in jpeg make d derived tbl uses different allocators depending
on the value of the macro HUFF LOOKAHEAD. It turned out that a higher value of
HUFF LOOKAHEAD than its default (8) can accelerate Huffman decoding, but also for
some images allocation requests could not be satisfied, so the default value is probably the
safest way to go. In order to “hook” into Huffman decoding with own functions (see section
), function start pass huff decoder had to be made publicly available, so the METHODDEF
macro (which expands to “static”) had to be removed for this function.

In order to improve the Arai-Agui-Nakajima IDCT the keyword “const” was removed
from a local dequantization table (aanscales) in jddctmgr.c in the function start pass. If
const is applied to a variable, this variable is placed into the ROM and is then first copied
into RAM when it is used. By removing const, this step can be omitted, resulting in higher
performance.

6.3 Changes for faster downscaling to a fourth

As explained in section 4.2.2, the algorithm to downscale to a fourth can make use of
absorbing the constant multiplication factors into the dequantization tables. The actual
implementation of this turned out to be dependent on the target platform, and maybe this
is why the authors of the JPEGLib did not favor this improvement. Different multiplication
tables for the dequantization tables are required for 16-bit and 32-bit platforms and espe-
cially for 16-bit platforms such as the M2, this leads to reduced accuracy. In order to turn
on the new functionality, the macro USE FASTER 2x2 IDCT must be defined in jconfig.h:

#define USE_FASTER_2x2_IDCT

In jddctmgr.c now the two tables are defined with the macros SLOPPY16BITTABLE
and ACCURATETABLE:

121



CHAPTER 6. JPEG DECODING ON THE MICRONAS SDA 6000 CONTROLLER

/*

Table for decoding to the fourth on 16-bit platforms

with very unaccurate results:

*/

#define SLOPPY16BITTABLE 32, 29, 16, 10, 16, 7, 16, 6,\

29, 26, 14, 9, 14, 6, 14, 5,\

16, 14, 8, 5, 8, 3, 8, 3,\

10, 9, 5, 3, 5, 2, 5, 2,\

16, 14, 8, 5, 8, 3, 8, 3,\

7, 6, 3, 2, 3, 1, 3, 1,\

16, 14, 8, 5, 8, 3, 8, 3,\

6, 5, 3, 2, 3, 1, 3, 1\

/*

Table for decoding to the fourth on all other platforms

with accurate results:

*/

#define ACCURATETABLE 2097152, 1900287, 1048576, 667292, 1048576, 445870, 1048576, 377991,\

1900287, 1721902, 950143, 604652, 950143, 404015, 950143, 342508,\

1048576, 950143, 524288, 333646, 524288, 222935, 524288, 188995,\

667292, 604652, 333646, 212325, 333646, 141871, 333646, 120273,\

1048576, 950143, 524288, 333646, 524288, 222935, 524288, 188995,\

445870, 404015, 222935, 141871, 222935, 94795, 222935, 80364,\

1048576, 950143, 524288, 333646, 524288, 222935, 524288, 188995,\

377991, 342508, 188995, 120273, 188995, 80364, 188995, 68129

These two tables contain the constant factors for the algorithm of downscaling to a fourth
from section 4.2.2 for fixed point arithmetics. SLOPPY16BITTABLE uses 3-bit fixed
point arithmetics, which means that the constant factors are scaled with 23 = 8 whereas
ACCURATETABLE uses 19-bit fixed point arithmetics, which means that the constant
factors are scaled with 219 = 524288. It can easily be shown that these two values lead to
the maximum accuracy for 16-bit and 32-bit platforms without leading to an overflow. The
floating point values that represent the factors from the algorithm in section 4.2.2 which
lead to these two tables are the following:

4.000000 ,3.624510 ,2.000000 ,1.272759 ,2.000000 ,0.850430 ,2.000000 ,0.720960 ,

3.624510 ,3.284268 ,1.812255 ,1.153281 ,1.812255 ,0.770598 ,1.812255 ,0.653281 ,

2.000000 ,1.812255 ,1.000000 ,0.636379 ,1.000000 ,0.425215 ,1.000000 ,0.360480 ,

1.272759 ,1.153281 ,0.636379 ,0.404979 ,0.636379 ,0.270598 ,0.636379 ,0.229402 ,

2.000000 ,1.812255 ,1.000000 ,0.636379 ,1.000000 ,0.425215 ,1.000000 ,0.360480 ,

0.850430 ,0.770598 ,0.425215 ,0.270598 ,0.425215 ,0.180808 ,0.425215 ,0.153281 ,

2.000000 ,1.812255 ,1.000000 ,0.636379 ,1.000000 ,0.425215 ,1.000000 ,0.360480 ,

0.720960 ,0.653281 ,0.360480 ,0.229402 ,0.360480 ,0.153281 ,0.360480 ,0.129946

In order to do the actual implementation of absorbing these tables into the dequantization
values the following code must be added to the function start pass in jddctmgr.c:

122



6.3. CHANGES FOR FASTER DOWNSCALING TO A FOURTH

#ifdef PROVIDE_ISLOW_TABLES

case JDCT_ISLOW:

{

/* For LL&M IDCT method, multipliers are equal to raw quantization

* coefficients, but are stored as ints to ensure access efficiency.

*/

ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;

if (method_ptr != jpeg_idct_2x2)

{

for (i = 0; i < DCTSIZE2; i++)

{

ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];

}

}

else

{

#ifdef USE_FASTER_2x2_IDCT

static const INT32 iTwoByTwoScales[DCTSIZE2] =

{

#if (INT_MAX==32767)

SLOPPY16BITTABLE

#else

ACCURATETABLE

#endif

};

for (i=0;i<DCTSIZE2;i++)

ismtbl[i] = (ISLOW_MULT_TYPE)((INT32) qtbl->quantval[i] *

(INT32) iTwoByTwoScales[i]);

#else //USE_FASTER_2x2_IDCT

for (i = 0; i < DCTSIZE2; i++)

{

ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];

}

#endif

}

}

break;

#endif

This piece of code checks whether the downscaling should be downscaling to a fourth (if
(method ptr != jpeg idct 2x2). . . ). If so, the dequantization tables are multiplied with
either SLOPPY16BITTABLE or ACCURATETABLE. The detection of the platform is
done with checking the value of the standard C macro INT MAX. If INT MAX evaluates
to 32767, it is a 16-bit platform. For this to work, the standard header limits.h must be
included at the beginning of the file:

#include <limits.h> /*for INT_MAX*/

This header file must be included in the same way in jidctred.c because in this file the
alternative variant of the function jpeg idct 2x2 is implemented. Depending on the value
of the macro USE FASTER 2x2 IDCT the preprocessor uses the appropriate version in
jidctred.c like in the following:

123



CHAPTER 6. JPEG DECODING ON THE MICRONAS SDA 6000 CONTROLLER

#ifndef USE_FASTER_2x2_IDCT

GLOBAL(void)

jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,

JCOEFPTR coef_block,

JSAMPARRAY output_buf, JDIMENSION output_col)

{

/* standard implementation that comes with the JPEGLib */

.....

}

#else

GLOBAL(void)

jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,

JCOEFPTR coef_block,

JSAMPARRAY output_buf, JDIMENSION output_col)

{

/* new, faster implementation with constants absorbed in dequantization table */

.....

}

#endif

The complete implementation of the faster variant of jpeg idct 2x2 is the following.

GLOBAL(void)

jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,

JCOEFPTR coef_block,

JSAMPARRAY output_buf, JDIMENSION output_col)

{

int tmp0, tmp10, z1;

JCOEFPTR inptr;

ISLOW_MULT_TYPE * quantptr;

int * wsptr;

JSAMPROW outptr;

JSAMPLE *range_limit = IDCT_range_limit(cinfo);

int ctr;

int workspace[DCTSIZE*2]; /* buffers data between passes */

SHIFT_TEMPS

/* Pass 1: process columns from input, store into work array. */

inptr = coef_block;

quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;

wsptr = workspace;

for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {

/* Don’t bother to process columns 2,4,6 */

if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)

continue;

if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 &&

inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) {

/* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */

int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);

wsptr[DCTSIZE*0] = dcval;

wsptr[DCTSIZE*1] = dcval;

continue;

}

124



6.3. CHANGES FOR FASTER DOWNSCALING TO A FOURTH

/* Even part */

z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);

tmp10 = z1;

/* Odd part */

z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);

tmp0 = z1;

z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);

tmp0 += z1;

z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);

tmp0 -= z1;

z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);

tmp0 -= z1;

/* Final output stage */

wsptr[DCTSIZE*0] = (int) ((tmp10 + tmp0));

wsptr[DCTSIZE*1] = (int) ((tmp10 - tmp0));

}

/* Pass 2: process 2 rows from work array, store into output array. */

wsptr = workspace;

for (ctr = 0; ctr < 2; ctr++) {

outptr = output_buf[ctr] + output_col;

/* It’s not clear whether a zero row test is worthwhile here ... */

#ifndef NO_ZERO_ROW_TEST

if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {

/* AC terms all zero */

#if (INT_MAX==32767)

JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0],

CONST_BITS+PASS1_BITS+3-10) & RANGE_MASK];

#else

JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0],

CONST_BITS+PASS1_BITS+3+6) & RANGE_MASK];

#endif

outptr[0] = dcval;

outptr[1] = dcval;

wsptr += DCTSIZE; /* advance pointer to next row */

continue;

}

#endif

/* Even part */

tmp10 = (INT32) (wsptr[0]);

/* Odd part */

z1 = wsptr[1];

tmp0 = z1;

z1 = wsptr[5];

tmp0 += z1;

125



CHAPTER 6. JPEG DECODING ON THE MICRONAS SDA 6000 CONTROLLER

z1 = wsptr[3];

tmp0 -= z1;

z1 = wsptr[7];

tmp0 -= z1;

/* Final output stage */

#if (INT_MAX==32767)

outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,

CONST_BITS+PASS1_BITS+3-10) & RANGE_MASK];

outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,

CONST_BITS+PASS1_BITS+3-10) & RANGE_MASK];

#else

outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,

CONST_BITS+PASS1_BITS+3+6) & RANGE_MASK];

outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,

CONST_BITS+PASS1_BITS+3+6) & RANGE_MASK];

#endif

wsptr += DCTSIZE; /* advance pointer to next row */

}

}

Note that the automatic variables tmp0, tmp10 and z1 are now int variables, not the
typedef’ed data type INT32 as before, which also leads to faster code, at least on 16-bit
platforms. Despite the 3-bit fixed point arithmetics for 16-bit platforms, a surprising visual
fidelity can be achieved. Table 6.1 shows the deviations of the new implementation of
jpeg idct 2x2 for decoding the test file testimg.jpg (227× 149 pixels resolution) that comes
with the JPEGLib.

3-bit table 19-bit table

Peak Error: 1 1
Mean Square Error: 0.026316 0.009541
Mean Error: -1 8
Different Pixel Components: 171 62

Table 6.1: Deviations of the new implementation from the standard implementation

Table 6.1 shows that no single component per pixel has a deviation of more than 1 (peak
error), but that the 19-bit table (based on the macro ACCURATETABLE) is much closer
to the reference made with the JPEGLib’s standard implementation than the 3-bit table
(based on the macro SLOPPY16BITTABLE), which can be seen from the values for the
mean square error3 and the number of different pixel components4. The mean error5 shows
that many errors with the 3-bit table cancel themselves out.

3This is the mean per-pixel deviation.
4These is the sum of pixel components (R,G and B) that differ from the reference image.
5This is the signed sum of deviations from the reference image over the whole image.

126



6.4. IMPORTANT COMPILER OPTIMIZATION SETTINGS

In order to measure the performance of this modified algorithm on M2, a JPEG image
of file size ∼ 160 kByte with a spatial resolution of 2048× 1536 pixels resolution and 4:4:4
chroma subsampling was decoded. Decoding time for this image was reduced from 53.10 s
to 50.94 s.

6.4 Important compiler optimization settings

In order to get the maximum performance out of the JPEGLib, quite some time was devoted
to find the combination of compiler optimization settings that delivers best performance.
The settings used were -Oa (“relax alias checking”: Registers are not cleared after a write
to an indirect address), -Of (“produce fast code”: Execution speed is favoured above code
density 6), -Ol (“enable fast loops”: Duplicates a loop condition at the end of a loop to
save the unconditional jump to the start of the loop), -Os (“generate jump tables for switch
statements”: Generates a jump table for switch statements instead of a slower jump chain),
-Ot (“turn tentative declarations into defining occurrences”: declarations of global variables
that do not define the variables value are turned into defining occurrences, allowing more
data to be optimized).

Furthermore, one compiler switch that is not among the compiler optimizations turned
out to improve performance drastically: With the switch -S all automatic variables that
cannot be allocated in a register are not allocated on the stack but are treated instead as if
they were static variables. This way very expensive extra register move operations can be
saved but the functions that use this approach cannot be used recursively.

6.5 The custom data source manager for M2

In order to read JPEG data from memory instead of a file, a custom data source manager
object has to be supplied to the decompression object. Typically this happens by allocating
a jpeg source mgr struct on the stack, along with the decompression object. The address of
the data source manager object has to be supplied to the decompression object by assigning
it to the src member of the decompression object. Finally, the data source manager object
needs to implement four functions, which are only implemented as function pointers of
the data source manager object and need to be assigned values of real functions. The
implemented functions are init source, fill input buffer, skip input data and term source
which are all assigned to identical named members of the data source manager object. For
the resync to restart member of the data source manager object, the default implementation
that comes with the JPEGLib was used. The purpose of these four functions is as follows:

• init source: This function initializes the source manager and is called by
jpeg read header before any data is actually read. The members of the data source
manager object that specify the memory location where to start to read, and how
many bytes from this address on are valid, are to be specified in the implementation
of this function.

• fill input buffer: This function is called whenever the JPEGLib needs new data, be-
cause all data that previously was specified to be valid, either in init source or the

6Code size is not a problem since the M2 does not use an OS that pages and where excessive page misses
could occur because of code size.

127



CHAPTER 6. JPEG DECODING ON THE MICRONAS SDA 6000 CONTROLLER

last call to fill input buffer, has already been consumed. Again, the members of the
data source manager object that specify the memory location from where to read from
now on, and how many bytes from this address on are valid, are to be specified in the
implementation of this function.

• skip input data: This function is called whenever uninteresting data, such as APPn
markers (see section 2.3) need to be skipped. The number of “uninteresting bytes”
is passed to the function, and the implementation must calculate the new address of
“interesting data” and must calculate the number of valid bytes that are left from this
address on.

• term source: Called by jpeg finish decompress. This function allows cleanup of per-
source-manager data, e.g. if memory is allocated dynamically in init source, it can be
released here. Often, as in the case of the project for this thesis, this function consists
of an empty function body.

The actual implementation of these functions is very similar to the implementation of the
function that zeros memory (jzero far in jutils.c) in section JPEGLibChanges. In init source
simply the start of the array that contains the image is specified as the start of data to read.
The number of bytes up to the next page is specified as the initial number of bytes to read.
Whenever fill input buffer is now called, a page boundary has been reached and the new ad-
dress to read from is the start of the page and the number of bytes to read is either the com-
plete page or the rest of the input file if this is less than a page. The function skip input data
simply skips over the “uninteresting” data by using a temporary huge pointer that is in-
cremented by the number of bytes to skip, doing huge pointer arithmetics. The resulting
address of the temporary pointer is then the address where “interesting” data begins again.
The complete implementation of the data source manager can be found in the file jdecode.c
in the directory d:\work\ae7\V601 EvalBoard\FunctionLibrary\Functions\jpeg\Src.

6.6 Other implementations of custom functionality

This section contains the descriptions of various custom “managers” or functionality for
faster or more accurate performance of JPEG decoding on the M2. The majority of these
implementations consists out of copied versions of functions and data types that originate
from the JPEGLib and that were adapted to the needs of this project. Quite some custom
implementations could only be made with overuse of the “extern” keyword, which is nor-
mally considered to be a sign of bad coding and design practices. The same is true for the
redefinition of data types that are already used and defined in the JPEGLib.

In this project, “extern” and the reliance on custom but actually redefined data types
with identical binary layout to those in the JPEGLib had to be used because a lot of
functionality in the JPEGLib is not meant to be replaced by custom code, though the
design as a “subobject” or “manager” suggests this. Consequently, the designers of the
JPEGLib deliberately did not prototype these functions and data types in the associated
header files.

Doing these customizations in a rather “expedient” fashion served the goal not to make
these changes directly to the JPEGLib in order to be able to see afterwards which real
changes as documented in section 6.2 are necessary for M2 using the JPEGLib. Furthermore

128



6.6.1. “HOOKING” INTO HUFFMAN DECODING

this way the build cycles were much easier, because only one project needed to be built after
a change and the JPEGLib could remain relatively untouched throughout the whole project

A more elegant way would have been just to prototype these functions and data types
as was done in some rare cases, or even implement the changes inside the library, but the
classification of this project as a feasibility study probably justifies sacrificing some aspects
of good coding and design practices. Also, such an approach would have been useful if a
new version of the JPEGLib would have been released during this project. In this case,
only the few real necessary changes as described in section 6.2 would have to be applied
and the redefined data types and functions would have to be checked for compatibility with
the new version. Reimplementing instead all custom functionality in a new version of the
JPEGLib could easily have become a nightmare.

In the following we will sometimes look at these customizations from a slightly more
abstract point of view than from the actual code level, because a lot of code consists out of
copied code snippets from the JPEGLib. We will rather point out which functionality was
“borrowed” from the JPEGLib and what the essential modifications to the original code
were. It probably makes no sense to read the following subsections without access to the
source code of the JPEGLib and the custom code for the M2.

All source files mentioned in the following subsections can be found in directory src and
all header files in directory include under the directory
d:\work\ae7\V601 EvalBoard\FunctionLibrary\Functions\jpeg
except for those from the JPEGLib which can be found in the directory
d:\work\ae7\V601 EvalBoard\FunctionLibrary\Functions\Jpeglib.

6.6.1 “Hooking” into Huffman decoding

In order to put the Huffman tables into the IRAM, the struct my input controller as defined
in the JPEGLib’s file jdinput.c was redefined in jdecode.c. The decompresssion object has
a pointer to this struct as a member and this objects member of type jpeg input controller
(pub) has as a member to a function pointer (start input pass) that normally points to
the function start input pass in the JPEGLib’s file jdinput.c but is replaced in function
JpegDecode in file jdecode.c with my start input pass from the file huffhook.c. The func-
tion start input pass calls the decompression object’s entropy decoder subobject’s function
pointer named start pass which normally points to the function start pass huff decoder in
the JPEGLib’s file jdhuff.c. In order for start pass huff decoder to use tables that are in
IRAM, the standard tables first have to be copied over to the tables in IRAM and the point-
ers to these tables in the decompression object must modified to point to the tables in IRAM.
Both these steps happen in my start pass huff decoder in file huffhook.c which after per-
forming these steps calls start pass huff decoder. In order for my start pass huff decoder
to be executed, function my start input pass replaces the function pointer start pass of
the decompression object’s entropy decoder subobject and finally calls the JPEGLib’s
start input pass function. This way, my start input pass and my start pass huff decoder
work as wrappers for start input pass and start pass huff decoder, respectively, that set up
the Huffman tables in IRAM and direct the JPEGLib to use these instead of the default
ones that have been created before on the heap and have been filled with the correct values
from the JPEG input stream.

129



CHAPTER 6. JPEG DECODING ON THE MICRONAS SDA 6000 CONTROLLER

6.6.2 Using XRAM for the range-limit table

In order to limit the output of certain operations to the range [0. . . 255], a table is used in
the JPEGLib, and the decompression object has a pointer (sample range limit) that points
at index MAXJSAMPLE+1 of this table. In order to use the start of the XRAM address
range7 for this array, a global pointer (unsigned char *g lpXRAM) to the start of the XRAM
is used and set up like the following in function JpegDecode in file jdecode.c:

#if RANGELIMIT_IN_XRAM

/* now copy over the range limit table into the XRAM: */

if (!g_lpXRAM)

{

/* create our range-limit table in XRAM only one time,

it will be reused for each image */

g_lpXRAM = (unsigned char *)0xE000;

memcpy(g_lpXRAM, &cinfo.sample_range_limit[-MAXJSAMPLE-1], RANGE_LIMIT_TABLE_SIZE);

}

/* now do this in any case, because after each picture the same range-limit

table is newly created since it came from the heap: */

cinfo.sample_range_limit = &g_lpXRAM[MAXJSAMPLE+1];

#endif

This way for each newly decoded image, the sample range limit is properly set to point at
index MAXJSAMPLE+1 in the XRAM, where an exact copy of the range-limiting table
lies.

6.6.3 Modifying the color conversion and upsampling subobjects

The JPEGLib’s standard approach for decoding one or more lines requires prior allocation
of a suitable buffer that after a call to jpeg read scanlines contains RGB tupels as 24 bits
per pixel and 8 bits per color component. This means for an architecture like the M2
with the 4-4-4 or the 5-6-5 mode, that each line in the destination buffer must be filled by
looping over the buffer with 24 bits per pixel, extracting the RGB components, quantizing
the components by a right shift and storing this values in the appropriate format in the
destination buffer. An alternative for this slow approach is the implementation of custom
functionality that does the quantization to the 4-4-4 or 5-6-5 mode already in the color
conversion and upsampling stages8, which is described in the following.

In order to adapt the JPEGLib to store RGB tupels not as 24-bit tupels but instead
as 4-4-4 or 5-6-5 tupels in one word, the decompression object’s color conversion subobject
(for 4:4:4 chroma subsampling) and the upsampling subobject need to be modified to have
their function pointers point to custom functions that store the RGB tupels in the desired
format.

For this to be accomplished, first the struct my decomp master as defined in the
JPEGLib’s file jdmaster.c needs to be redefined in jdecode.c. After this step, the binary lay-
out of the struct my decomp master is known to the application and in function JpegDecode
in file jdecode.c the master subobject of the decompression object can safely be accessed.

7XRAM starts at address 0xE000 and like IRAM is 2 kBytes in size.
8Furthermore, by feeding jpeg read scanlines with pointers to the start of lines in the frame buffer, no

copy operation is required after jpeg read scanlines, because the color conversion and upsampling subobjects
work directly on the frame buffer.

130



6.6.4. MODIFYING THE DITHERING SUBOBJECTS

Via its member using merged upsample it can now be determined, whether the currently
decoded file uses 4:4:4 chroma subsampling (i.e. no subsampling) or whether it uses some
sort of subsampling. If no subsampling is used, depending on the output color space (color
or grayscale), the decompression object’s color conversion object’s file pointer color convert
is replaced by an own variant (my ycc rgb convert or my grayscale convert in files yccrgb.c
and grayconv.c, respectively).

For images with chroma subsampling, first the struct my upsampler from the JPEGLib’s
file jdmerge.c is redefined in file cstupsmp.h. After that, the binary layout of this upsam-
pling subobject of the decompression object is known to the application and its upmethod
function pointer can be assigned a new value, depending on the type of upsampling that is re-
quired. For 4:2:2 chroma subsampling, the address of function my h2v2 merged upsample
in file h2v2mups.c is assigned and for 4:2:0 chroma subsampling the address of function
my h2v1 merged upsample in file h2v1mups.c is assigned.

The functions my ycc rgb convert, my grayscale convert, my h2v2 merged upsample
and my h2v1 merged upsample are nothing else than copies of the JPEGLib’s functions
ycc rgb convert, grayscale convert9, h2v2 merged upsample and h2v1 merged upsample10

that were modified to store RGB tupels in the 4-4-4 mode or the 5-6-5 mode, depend-
ing on the value of the macro USE MIN GDI (see section 6.7), instead of 8-bits per color
component, as the JPEGLib’s version does.

6.6.4 Modifying the dithering subobjects

For the same reason as in section 6.6.3, the dithering subobjects need to be modified to use
custom functionality in order for the JPEGLib to work directly on the frame buffer.

In order to turn on dithering, after calling the JPEGLib’s function jpeg read header,
the quantize colors member of the decompression object must be assigned the value TRUE
and the dither mode member must be assigned one of the values JDITHER FS (for Floyd-
Steinberg dithering) or JDITHER ORDERED11 (for ordered dithering) as is done in the
function JpegDecode in file jdecode.c. In order to be able to access the quantizer subob-
ject (cquantize) of the decompression object, the struct my cquantizer as defined in the
JPEGLib’s file jquant1.c must be redefined, which is done in the file custdith.h. After this
step, the binary layout of this data type is known and the function pointers of this subobject
can be safely accessed and assigned new values.

If Floyd-Steinberg dithering is chosen, the color quantize member of the subobject is
assigned the address of the function quantize fs dither from file dithfsd.c.

If odered dithering is chosen, the color quantize member of the subobject is either as-
signed the address of the function quantize3 ord dither (for color output) or
quantize ord dither (for grayscale output). Both these functions reside in file dithord.c.

The functions quantize fs dither, quantize3 ord dither and quantize ord dither are all
modified copies of functions with the same name that reside in the JPEGLib’s file jquant1.c.
The modifications that were made include not only functionality for storing RGB tupels in
the 4-4-4 mode or the 5-6-5 mode. Additionally, for Floyd-Steinberg dithering, some quality

9The functions ycc rgb convert and grayscale convert can be found in the JPEGLib’s file jdcolor.c.
10The functions h2v2 merged upsample and h2v1 merged upsample can be found in the JPEGLib’s file

jdmerge.c.
11We simply disregard here the value JDITHER NONE which cannot be made effective in this project’s

source code.

131



CHAPTER 6. JPEG DECODING ON THE MICRONAS SDA 6000 CONTROLLER

improvements were made over the standard implementation. The standard implementation
in the JPEGLib uses only a maximum of 256 equally distributed colors for the display of
dithered images. Also, for the error diffusion involved in Floyd-Steinberg dithering (see [10]
and [16]), only these 256 colors which reside in a table are used. The custom implementation
for the M2 however takes advantage of the 4-4-4 mode or 5-6-5 mode of the M2 in that for
error diffusion the nearest colors that the M2 can display in the respective mode is used for
error diffusion and display. This results in much better quality of the image and also higher
performance because calculating a pixel value and the error it introduces involves only shift
operations whereas the standard implementation’s approach uses table-lookups which are
much slower than shift operations on the M2.

6.7 Customizing the behaviour of the Software

The software that was written for the M2 can be customized at three central points with
the help of macros. For both projects, the file jdecode.c in the directory
d:\work\ae7\V601 EvalBoard\FunctionLibrary\Functions\jpeg\Src
contains the definitions of the macros ENABLE FLOYD STEINBERG DITHER and
ENABLE ORDERED DITHER. By assigning these macros different values (1 or 0), us-
age of the JPEGLib can be customized.

ENABLE FLOYD STEINBERG DITHER and ENABLE ORDERED DITHER turn
on and off Floyd-Steinberg dithering and ordered dithering, respectively. Deliberate prepro-
cessor errors with the help of the #error directive assure that these two macros are used in a
mutually exclusive way. Similarly, if dithering is used, it is also assured that the JPEGLib’s
macro QUANT 1PASS SUPPORTED is turned on:

#if (ENABLE_FLOYD_STEINBERG_DITHER && ENABLE_ORDERED_DITHER)

#error FS-Dither and ordered dither are mutual exclusive //deliberate bail-out

#endif

#if (ENABLE_FLOYD_STEINBERG_DITHER || ENABLE_ORDERED_DITHER)

#ifndef QUANT_1PASS_SUPPORTED

#error You have to define QUANT_1PASS_SUPPORTED in jmorecfg.h for dithering, note that

#error this affects performance negatively for undithered images //deliberate bail-out

#endif

#endif

The second location for customization can be found in the file startup.c in the direc-
tory d:\work\mini\target\warmup\Source and is effective only for the second project. The
macros that can be used for customization are USE SERIAL UPLOAD,
USE PROGRESS MONITOR, DEMO SHOW, TV SET, DO CODE REDIRECTION,
DO DELAY, DISSOLVE, DELAYDURATION, SCALE and STRIPEHEIGHT.

Setting the value of USE SERIAL UPLOAD to 1 allows decoding of even very large files
that need to be transmitted onto the M2 development board via the serial line. Further
information on this can be found in [18].

Setting USE PROGRESS MONITOR to 1 allows for visual feedback of the decoding
and scaling process. If the MINI GDI library is used for 5-6-5 mode of the M2, every single
decoded line of the image can immediately be seen. When using the standard GDI library
(4-4-4 mode), stripes of the image of height STRIPEHEIGHT are output to the screen as
soon as these lines are decoded. Setting USE PROGRESS MONITOR to 0 has a slight

132



6.8. RESULTS

advantage in performance, since the processor does not need to care about simultaneous
read and write accesses to the frame buffer in the case of 5-6-5 mode and the additional
overhead of creating the bitmaps for the image stripes in the case of 4-4-4 mode is not
necessary.

If the macro DEMO SHOW evaluates to 1, two different alternating images are decoded
that come from the files jsample.c and jsample800x600.c in directory
d:\work\ae7\V601 EvalBoard\FunctionLibrary\Functions\jpeg\Src.

If DO DELAY evaluates to 1, a delay between the alternating decoding processes is
introduced whose duration is the value of macro DELAYDURATION in ms.

If DISSOLVE evaluates to 1, a fancy dissolving effect ([19]) after decoding one image
and after the delay is applied to the screen.

If DO CODE REDIRECTION evaluates to 1, the executable code is copied from ROM
into the DRAM upon startup. It is generally not advisable to set this value to 0 for other
purposes than to measure the impact of this to the performance.

If TV SET is assigned the value 1, the M2’s timing parameters are changed to those
that are suitable for a PAL TV set, otherwise 800×600 pixels resolution with SVGA timing
for a standard computer monitor is assumed.

Finally with setting SCALE to 1, the decoded image is scaled to 800× 600 pixels with
preserved aspect ratio as described in section 4.1.

The third location for customization are the second project’s preprocessor settings which
have to be set in the Integrated Development Environment. These settings include macros
that are of global scope for the whole project. The macros that are specified here are
USE MIN GDI, RANGELIMIT IN XRAM and ENABLE HUFFMAN HOOKING.

If USE MIN GDI evaluates to 1, the project uses the MINI GDI and images are rendered
on the screen in 5-6-5 mode. If USE MIN GDI evaluates to 0, the standard GDI library is
used and images are rendered on the screen in 4-4-4 mode.

If ENABLE HUFFMAN HOOKING evaluates to 1, the tables for the Huffman decoding
part are replaced with buffers in M2’s IRAM with the help of the functions
my start pass huff decoder and my start input pass from file huffhook.c in directory
d:\work\ae7\V601 EvalBoard\FunctionLibrary\Functions\jpeg\Src.
These two functions replace the JPEGLib’s start pass huff decoder and
start input pass functions.

If RANGELIMIT IN XRAM evaluates to 1, an often used table in the JPEGLib (the
sample range limit member of the decompression object) is replaced by an identical table
that is allocated in M2’s XRAM.

6.8 Results

The next few subsections will deal with the actual results of this thesis and how the potential
obstacles, as identified prior to the start of this thesis (see section 1.1), could be overcome.

6.8.1 Memory limitations and high-resolution JPEG files

One of the potential obstacles that were identified beforehand (see section 1.1) for real
usability of the JPEG decoder on the M2 was limited memory. The controller can be
used with a maximum of 8 MBytes of DRAM, and since it is a classical “Von-Neumann-
Architecture”, all the code and data, including the frame buffer that holds the decoded

133



CHAPTER 6. JPEG DECODING ON THE MICRONAS SDA 6000 CONTROLLER

image must fit into the same address space. Furthermore, in order to improve performance,
one of the first steps in the program code is its own replication from ROM to RAM12, so
effectively the complete code exists twice in the address space of the controller. Therefore
the initial expectations were that only images up to a certain resolution can be decoded
successfully and that typical images from digital still cameras are simply too large to fit into
memory, albeit the fact that the M2 can only display images of a maximum resolution of
800×600 pixels anyway. Therefore the need to downscale to this resolution is necessary, but
is impossible, due to memory limitations, if first the complete image needs to be decoded
and afterwards downscaled in the spatial domain to 800 × 600 pixels. Fortunately, the
JPEGLib offers the algorithms for downscaling to half, the fourth and to the eighth of the
original image’s size as decribed in sections 4.2 and 5.2. These options were used to scale
images down to a resolution of 800× 600 pixels or less, if necessary, and made the potential
problem of memory requirements a non-issue. This approach should work for images up to
a resolution of 6400× 4800 pixels13, which is 8 times the size of the M2’s frame buffer. For
higher resolutions, additional measures will have to be applied to make an image fit into
the 800 × 600 pixels frame buffer of the M2. Fortunately, such big images are not yet in
general use at the time of writing, at least not for digital still cameras.

However, it turned out that decoding progressive mode JPEG files is not possible due
to their massive memory requirements already during the decoding process. But since
progressive mode JPEG files are not as much in use as sequential mode JPEG files and
since the Exif standard for digital still cameras did not adopt progressive mode JPEG files,
this mode can safely be disregarded.

6.8.2 4-4-4 mode versus 5-6-5 mode

JPEG Performance One of the standard modes of the M2 for displaying images is the 4-4-4
mode in which one word (two bytes) holds one RGB tuple with 4 bits per color component14.
The image quality of this mode turned out to be completely insufficient. When dithered with
ordered dithering, image quality was very much improved but showed the typical patterns
of ordered dithering. When applying Floyd-Steinberg Dithering, image quality seemed to
be quite acceptable, but Floyd-Steinberg dithering comes at unacceptable additional costs
of computation. Fortunately, when halfway through this thesis, the vendor of the standard
GDI library15, provided an additional experimental library (the “MINI GDI” library) that
turns the M2 into 5-6-5 mode. In this mode one word holds RGB tupels in 5 bits for the
red and blue component and 6 bits for the green component. The quality of images in 5-6-5
mode turned out to be completely sufficient and the library seemed to be useful and stable.
For more information on this library see [17].

6.8.3 JPEG Performance

In order to measure the performance of JPEG decoding on the M2, the decoding software
was used in the mode that accepts a file which can be transmitted via the serial line into
the controller’s memory. Now from one and the same image, JPEG files were created with

12This step is called “code redirection”. The reason for code redirection is that RAM can be accessed
much faster than ROM.

13The JPEG standard allows a maximum resolution of 65535× 65535 pixels.
14The remaining bits are used for transparency and blinking modes.
15The standard GDI library is only capable of the 4-4-4 mode.

134



6.8.3. JPEG PERFORMANCE

0

10

20

30

40

50

60

70

80

90

100

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000

File Size (Bytes)

T
im

e
 (

s
) Decoding tim e (total)

Color Decoding

DCT

Figure 6.1: Decoding times for a series of images with 2048× 1536 pixels resolution (4:2:0
mode, downsampled to a fourth)

different quality settings but identical chroma subsampling. These files were transmitted
via the serial line onto the M2 board and the total time was measured without a subsequent
scaling in the spatial domain. For the same set of files additionally the time for the IDCT
and the color decoding step were measured. Figures 6.1 and 6.2 show the result for an
image with a resolution of 2048× 1536 pixels, first with 4:2:0 mode then with 4:4:4 mode,
both downsampled to a fourth via the algorithm from section 4.2.2. These graphs show the
performance as decoding time versus file size (quality). Figure 6.3 shows the performance
for an image with 800 × 600 pixels resolution and 4-2-2 chroma subsampling in different
qualities. The time that is not spend in the IDCT and the color decoding parts can be
roughly considered the time spent in Huffman decoding. What can be found surprising in
figures 6.1, 6.2 and 6.3 is the fact, that the bigger the files size and thus the higher the
quality of the picture gets, the time spent in Huffman decoding more and more outweighs
the time spent in IDCT and color decoding. At first glance it seems that the complete
decoding process has a computational complexity of O(N) and that both Huffman decoding
and the IDCT have a computational complexity of O(N) whereas color decoding has a
computational complexity of O(1). However, the JPEGLib’s IDCT parts contain checks
whether e.g. a complete row of DCT coefficients, besides from the DC coefficient, have all
zeroes as their values. In this case all coefficients get the DC coefficient’s value and the
necessity to calculate the coefficients is obsolete. The lower the quality of the picture, the
more complete rows can be calculated with this adaptive IDCT. The higher the quality of the
image, the fewer such optimizations can be performed and the check for zeroes negatively

135



CHAPTER 6. JPEG DECODING ON THE MICRONAS SDA 6000 CONTROLLER

0

10

20

30

40

50

60

70

80

90

100

110

120

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000

file size (bytes)

ti
m

e
 (

s
) Decoding tim e (total)

Color Conversion

DCT

Figure 6.2: Decoding times for a series of images with 2048× 1536 pixels resolution (4:4:4
mode, downsampled to a fourth)

136



6.8.3. JPEG PERFORMANCE

0

5

10

15

20

25

30

0 50000 100000 150000 200000 250000 300000 350000 400000

file size (bytes)

ti
m

e
 (

s
) Decoding tim e (total)

Colour decoding

DCT

Figure 6.3: Decoding times for a series of images with 800 × 600 pixels resolution (4:2:2
mode, no downsampling)

137



CHAPTER 6. JPEG DECODING ON THE MICRONAS SDA 6000 CONTROLLER

affects performance. Since the number of operations required to calculate the IDCT for
a certain number of points has an upper bound, if chroma subsampling and final image
resolution is constant, we can therefore safely assume a computational complexity of O(1)
for the IDCT as well as for the color decoding part.

Steps to improve the performance of the Huffman decoding part included the usage
of fast on-chip memory areas (IRAM and XRAM), that were used for the tables that are
used during Huffman decoding (see also section 6.2). A slight performance improvement
with this could be measured, for instance the complete decoding time for an image with
2048 × 1536 pixels resolution and 4-2-0 chroma subsampling and a file size of about 1.35
MByte decreased from roughly 70 s to 66 s.

6.8.4 Image scaling Performance

Image scaling performance was measured using the algorithm from 4.1 that simply maps
source pixels to destination pixels. Generally, the size of the JPEG source image was used
to determine whether a downscaling algorithm from section 4.2 should be used. If the JPEG
image to be decoded had a spatial resoulution that exceeded 800 pixels in the horizontal
direction or 600 pixels in the vertical direction a proper downscaling algorithm was chosen
so that these criteria were met. After the decoding step, images were now 800× 600 pixels
in size or smaller and could now be upsampled to the maximum resolution of 800 × 600
pixels while preserving their aspect ratio. The time required for this upsampling step to
800× 600 pixels was exactly 11.3 s, independent from the source image size.

6.8.5 Debugging versus “Free-Run” Performance

The decoding times above were all measured with the remote debugger running while de-
coding. With the debugger running, exact numbers can be measured by a variable in the
code that is incremented by a microcontroller timer. This way, even slight improvements
in performance can be accurately measured. In a “free run”, the executable binary that is
executed on the microcontroller gets loaded from an EPROM, and measuring performance
is subject to human reaction times, since performance can only be measured using a stop-
watch. But performance in this case is actually much faster and also reflects the real usage
conditions of the microcontroller.

Table 6.2 contains shows the decoding performance on the M2 for the Debugging Run
and the “Free Run” for different configurations of the software. These figures are valid for
the aforementioned file (2048 × 1536 pixels resolution, 4-2-0 chroma subsampling), which
has the typical file size (∼ 1.35 MBytes) and quality of images taken with a digital still
camera. For a successful commercial product it would be desirable to decode such an image
in less than 5 ∼ 10 s, so the processing power needed to achieve this should roughly be
tenfold and is definitely not in the realm of the capabilities of the M2.

138



CHAPTER 6. JPEG DECODING ON THE MICRONAS SDA 6000 CONTROLLER

Debugging Run (s) “Free Run” (s)

No dithering, no scaling 66 49
Scaling to 800× 600 pixels, no dithering 77 57
Floyd-Steinberg dithering, no scaling 76 59
Ordered dithering, no scaling 68 53

Table 6.2: Debugging versus “Free Run” Performance

139



Chapter 7

Summary and Future Outlook

Nothing’s impossible I have found,
for when my chin is on the ground.
I pick myself up, dust myself off, start all over again.

Don’t lose your confidence if you slip,
be grateful for a pleasant trip.
And pick yourself up, dust yourself off and start all over again

Work like a soul inspired till the battle of the day is won,
you may be sick and tired but you’ll be a man my son.
Don’t you remember the famous men who had to fall to rise again?
They picked themselves up, dust themselves off and started all over again.

– From the song “Pick Yourself Up” by Jerome Kern and
Dorothy Field (from the movie “Swing Time”, 1936)

Market research has shown that the range of available software packages for JPEG
decoding is very limited. The most mature package seemed to be the Independent

JPEG Group’s JPEGLib, which allows both JPEG encoding and decoding. In addition, this
software library, written entirely in C, can be used under very modest licensing requirements,
so this software was further examined. It turned out, that the complete library was written
with high portability in mind for all imaginable computer architectures, and it took only
about two weeks to port the decoding part of the library to the SDA-6000 microcontroller.

The standard functionality of the decoding part of the JPEGLib is to decode the JPEG
file into image buffers consisting of RGB tupels with a color depth of 24 bit (or 8 bits per
color component). Because the SDA-6000 microcontroller’s standard software package is
only capable of 4 bits per color component, parts of the library (the color conversion and
upsampling backends) were replaced by custom versions with less color depth, that, in order
to avoid the need of unnecessary block copy operations, were modified to operate directly
on the frame buffer of the graphics accelerator unit of the SDA-6000. Similar modifications

140



CHAPTER 7. SUMMARY AND FUTURE OUTLOOK

were done for the dithering backends of the JPEGLib in order to determine the performance
penalty and image quality improvement when using these backends instead of the modified
standard color conversion and upsampling backends.

The display limitations could be overcome with an experimental software library from
the standard software library vendor for the graphics accelerator unit of the microcontroller.
This experimental library switched the controller into the 5-6-5 mode and turned out to be
completely sufficient for the purpose of rendering JPEG decoded images. Also, the image
quality seemed to be quite acceptable.

As to memory limitations, it turned out, that for decoding progressive mode JPEG
images, memory requirements are too high, at least for 3.3 Megapixel images. But this also
is not that much of a problem, since the Exif format specification for digital still cameras
specifies only the baseline process to be of any relevance.

The JPEG files to be decoded were first compiled into the executable binary as huge
arrays in C source files, but due to compiler limitations, the maximum size of JPEG files
that could be decoded this way was about 180 kBytes. In order to be able to decode typical
images from digital still cameras, that are well in the range of 1 ∼ 2 MBytes, a tool had to
be written, that allows the upload of such big JPEG files via the serial interface onto the
microcontroller board. Besides from the tool, that was implemented as a Win32 console
mode application, software for the receiving part on the microcontroller had to be written
as well.

A result of decoding various sized JPEG files of identical resolution was, that the com-
putational complexity of JPEG decoding is O(N), with N being the JPEG file’s size, at least
this is what the measurement results suggest. The entropy decoding (Huffman decoding)
part of the JPEG decoding process was determined to have this computational complexity
of O(N) that is responsible for this behaviour. The color conversion part in the backends
and the IDCT parts both show a computational complexity of O(1) if chroma subsampling
and final image resolution are identical. However, the surprising result of the comparison
of decoding times of JPEG files of different sizes but identical chroma subsampling and
resolution was, that for typical JPEG files from digital cameras, the amount of time spent
in entropy decoding (Huffman decoding) far outweighs the time spent in the IDCT or color
conversion stages. Since the Huffman decoding stage must be completed entirely without
any omission before the IDCT process can be performed, ways were sought to improve
this process. The Huffman decoding part of the JPEGLib turned out to be very efficiently
coded and written according to the guidelines laid out in the JPEG standards document.
Because of the extensive use of tables in this process, the attempt was made to use as the
memory locations for these tables special on-chip memory areas that can be accessed by
the controller without waitstates. It turned out, that this way only a marginal performance
improvement was possible.

As to the performance of the IDCT process in the JPEGLib, several observations could
be made that could lead to improved performance, such as using a true two-dimensional
IDCT instead of a row-columnwise approach, and moving constant multiplication factors
into the quantization tables in the case of downscaled decoding. Also for scaling to arbitrary
sizes in the spatial domain, much more sophisticated aproaches than the simple but fast
pixel mapping algorithm should be pursued, but would require substantial changes to the
complete color decoding, upsampling and dithering backends with much higher memory
requirements.

As a summary, it turned out, that the SDA-6000 microcontroller is well capable of

141



CHAPTER 7. SUMMARY AND FUTURE OUTLOOK

decoding JPEG files of common resolutions, but that the performance for this is clearly
unacceptable. In order to be competitive with already existing but far more expensive
solutions, a microcontroller like the SDA-6000 needs at least tenfold processing power or
speed.

142



Index

4-4-4 mode, 2, 115, 134
5-6-5 mode, 2, 115, 134

AC coefficient, 7
Ahmed, 17
Arai-Agui-Nakajima-DCT, 49
Arithmetic Coding, 8

Chroma, 10
Chroma Subsampling, 11

4:2:0 chroma subsampling, 11
4:2:2 chroma subsampling, 11
4:4:4 chroma subsampling, 11

CMYK, 10
Color component, 6
Color Space, 5, 10
Color Space Conversion, 11

RGB to YCbCr, 11
YCbCr to RGB, 11

DC coefficient, 7
DCT, 17

coefficients, 18
Relationship to DFT, 20
two-dimensional, 19, 63
two-dimensional as a tensor product, 64

DCT Frequency Domain, 17
DFT, 17, 20

Relationship to DCT, 20
Discrete Cosine Transform, 17

FDCT, 17
Forward, 17
History, 17
IDCT, 18
Inverse, 18
Mathematical Definition, 17
Relationship to DFT, 20
two-dimensional, 19

two-dimensional as a tensor product, 64
Discrete Fourier Transform, 17, 20

Relationship to DCT, 20
Dithering, 103, 104, 110, 119, 132, 134

Floyd-Steinberg dithering, 104, 134
Ordered Dithering, 104, 134

Extended DCT-based Process, 10

Fast two-dimensional 8-point DCTs, 63
Feig’s 2D-DCT, 66
Feig’s 2D-IDCT, 80
Feig, Ephraim, 66

GDI, 115

Hamilton, Eric, 11
Huffman Coding, 8

IJG, 12, 101
Independent JPEG Group, 8, 12, 101

JPEGLib, 12
Inverse Loeffler - Ligtenberg - Moschytz -

DCT, 40
Inverse Arai-Agui-Nakajima-DCT, 61

JFIF, 10
JPEG, 4

Artifacts, 16
Baseline Process, 10
Compression classes, 6
DCT-based Encoding, 6
Decoder, 5
Decoding Process, 8
Encoder, 5
Encoding Process, 6
Entropy Encoding, 7
FDCT, 6
Hierarchical Mode, 9

143



INDEX

History, 4
IDCT, 9
Information loss, 12
Interchange Format, 5
ISO IS 10918-1, 5
JFIF File Format, 10
Lossless Mode, 9
Marker, 12
Modes of operation, 9
Progressive DCT-based Mode, 9
Quantization, 7, 9, 12, 13
Sequential DCT-based Mode, 9
Standard, 5
T.81, 5
Thumbnail data, 11

JPEG File Interchange Format, 10
JPEGLib, 8, 101

Adaption, 105
Architecture, 107
Capabilities, 103
Changes for faster downscaling, 121
Changes for M2, 115
Compression object, 108, 110
Decoding, 109
Decompression object, 109, 110
Encoding, 108
Goals, 102
History, 102
M2 Custom data source manager, 127
Memory managers, 106
Motivation, 102
Package content, 104
Porting, 105
Possible Improvements, 111
Summary, 111
Usage, 107

Lane, Thomas G., 102, 103
Ligtenberg-Vetterli-DCT, 28
Loeffler-Ligtenberg-Moschytz-DCT, 38
Luminance, 10

M2, 114
IRAM, 121
JPEG Performance, 134
Results, 133
XRAM, 133

Marker, 11, 12
APP0, 11
SOI, 12

MINI GDI, 115

Quantization Table, 7

RGB, 8, 10

Scaling, 93
In the IDCT process, 97
Spatial Domain Scaling, 93

SDA 6000, 1, 114
stride-by-s permutation matrix, 64

Tensor product, 43, 63

Winograd DFT, 42
Winograd, Shmuel, 42

YCbCr, 8, 10

Zig-zag Sequence, 8

144



Bibliography

[1] Nasir Ahmed. The DCT - an algorithm that impacts the world of digital audio and
video. QUANTUM - Research and Scholarship at the University of New Mexico, 15(1),
1998.

[2] J.F. Blinn. What’s the Deal with the DCT? IEEE Computer Graphics and Applica-
tions, 13:78–83, 1993.

[3] E. O. Brigham. The Fast Fourier Transform and its Applications. Prentice Hall, 1988.

[4] A. Ligtenberg C. Loeffler and G. S. Moschytz. Practical fast 1-D DCT algorithms with
11 multiplications. ICASSP 1989, 2:988 – 991, 1989.

[5] CCITT. Information Technology - Digital Compression and coding of continuous-tone
still images - requirements and guidelines. International Telecommunication Union, Sep
1992. The JPEG Standard: CCITT Recommendation T.81 and ISO/IEC International
Standard 10918-1.

[6] J. W. Cooley and J. W. Tukey. An algorithm for the machine computation of complex
Fourier series. Mathematics of Computation, 19:297 – 301, 1965.

[7] E. Dijkstra. Goto statement considered harmful. Communications of the ACM,
11(3):147–148, Mar 1968.

[8] E. Feig. A fast scaled DCT algorithm. Image Processing Algorithms and Techniques,
1244:2 – 13, 1990.

[9] E. Feig and S. Winograd. Fast Algorithms for the Discrete Cosine Transform. IEEE
Transactions on Signal Processing, 40(9):2174 – 2193, Sep 1992.

[10] Robert W. Floyd and Louis Steinberg. An adaptive algorithm for spatial greyscale.
Proceedings of the Society for Information Display, 17(2):75–77, 1976.

[11] Eric Hamilton. JPEG File Interchange Format, Sep 1992. JPEG File Interchange
Format Version 1.02.

[12] Stephen Hawley. Ordered dithering. Graphics Gems I, I:176 – 178, 1990.

[13] R. Tolimieri J. Granata, M.Conner. The Tensor Product: A Mathematical Program-
ming Language for FFTs and other Fast DSP Operations. IEEE Signal Processing
Magazine, pages 40 – 48, Jan 1992.

145



BIBLIOGRAPHY

[14] JEIDA. Digital Still Camera Image File Format Standard (Excnangeable image file
format for Digital Still cameras: Exif. Japan Electronic Industry Development Asso-
ciation (JEIDA), Jun 1998. Exif Standard Version 2.1.

[15] T. Kientzle. Implementing fast DCTs. Dr. Dobb’s Journal, 24:115 – 119, Mar 1998.

[16] Donald E. Knuth. Digital halftones by dot diffusion. ACM Transactions on Graphics,
6(4):245–273, 1987.

[17] S. Kuhr. Introduction to the MINIGDI Library. Sony Engineering Report, VPE-STG-
Report-No. 0083-0, December 2001.

[18] S. Kuhr. Uploading Files onto M2 via the Serial Interface. Sony Engineering Report,
VPE-STG-Report-No. 0088-0, December 2001.

[19] Mike Morton. A digital “dissolve” effect. Graphics Gems I, I:221 – 232, 1990.

[20] T. Natarajan N. Ahmed and K. R. Rao. Discrete cosine transform. IEEE Transactions
on Computers, Vol. C-23:90 – 93, Jan 1974.

[21] Mark J. Pavicic. Convenient anti-aliasing filters that minimize “bumpy” sampling.
Graphics Gems I, I:144 – 146, 1990.

[22] William B. Pennebaker and Joan L. Mitchell. JPEG still image data compression
standard. van Nostrand Reinhold, 1993.

[23] K. R. Rao and P. Yip. Discrete Cosine Transform - Algorithms, Advantages and
Applications. Academic Press, 1990.

[24] Dale A. Schumacher. A comparison of digital halftoning techniques. Graphics Gems
II, II:57 – 71, 1991.

[25] Dale A. Schumacher. Fast anamorphic scaling. Graphics Gems II, II:78 – 79, 1991.

[26] Dale A. Schumacher. General filtered image rescaling. Graphics Gems III, III:8 – 16,
1992.

[27] H.F. Silverman. An Introduction to Programming the Winograd Fourier Transform
Algorithm. IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-
25(2):152 – 65, Apr 1977.

[28] Spencer W. Thomas and Rod G. Bogart. Color dithering. Graphics Gems II, II:72 –
77, 1991.

[29] B. D. Tseng and W. C. Miller. On computing the discrete cosine transform. IEEE
Transactions on Computers, C-27:966 – 968, Oct 1978.

[30] Ken Turkowski. Filters for common resampling tasks. Graphics Gems I, I:147 – 165,
1990.

[31] M. Vetterli and A. Ligtenberg. A Discrete Fourier-Cosine Transform Chip. IEEE
Journal on Selected Areas in Communication, Vol. SAC-4:49 – 61, Jan 1986.

146



BIBLIOGRAPHY

[32] M. Vetterli and H.J. Nussbaumer. Simple FFT and DCT algorithms with reduced
number of operations. Signal Processing, 6:267 – 78, 1984.

[33] Gregory K. Wallace. The JPEG Still Compression Standard. IEEE Transactions on
Consumer Electronics, Apr 1991.

[34] S. Winograd. On Computing the Discrete Fourier Transform. Mathematics of Com-
putation, 32:175 –199, Jan 1978.

[35] T. Agui Y. Arai and M. Nakajima. A fast DCT-SQ Scheme for Images. Transactions
of the IEICE, E 71:1095 – 1097, Nov 1988.

147



Declaration

Hereby I explain the fact that I have written the available work independently and used
none other than the indicated aids. References to the work of others are clearly documented.

Full name: Stefan Kuhr

Signature: .............................

Stuttgart, 31st of January 2002.

148


	Title page
	Contents
	Acknowledgements
	Notational Conventions
	List of Acronyms
	List of Figures
	List of Tables
	1 Introduction
	1.1 Subject and conceptual formulation of this thesis
	1.2 Overview of the subsequent chapters

	2 A brief introduction to JPEG encoding and decoding
	2.1 History and Motivation
	2.2 The JPEG Standard
	2.2.1 Compression classes
	2.2.2 DCT-based Encoding
	2.2.3 Modes of operation
	2.2.4 The baseline process

	2.3 The JPEG File Interchange Format (JFIF) 
	2.4 Compression and information loss in JPEG encoding

	3 The Discrete Cosine Transform
	3.1 Mathematical Definition of the DCT 
	3.1.1 The one-dimensional DCT
	3.1.2 The two-dimensional DCT

	3.2 Relations between the DCT and the DFT
	3.2.1 Computing an N-point DCT from a 2N-point DFT
	3.2.2 A Divide-and-Conquer Scheme for real input vectors
	3.2.3 DCT and DFT for real and symmetrical input vectors

	3.3 Fast one-dimensional 8-point DCTs 
	3.3.1 A simple and fast 8-point DCT 
	3.3.2 The Ligtenberg-Vetterli-DCT 
	3.3.2.1 An algebraic approach to the Ligtenberg-Vetterli-DCT 
	3.3.2.2 A graphical approach to the Ligtenberg-Vetterli-DCT 

	3.3.3 The Loeffler-Ligtenberg-Moschytz-DCT 
	3.3.4 The Inverse Loeffler-Ligtenberg-Moschytz-DCT 
	3.3.5 The Winograd 16-point ``small-N'' DFT
	3.3.6 The Arai-Agui-Nakajima-DCT 
	3.3.7 The Inverse Arai-Agui-Nakajima-DCT 

	3.4 Fast two-dimensional DCTs 
	3.4.1 The tensor product and its properties
	3.4.2 The two-dimensional DCT as a tensor product
	3.4.3 Feig's fast two-dimensional DCT
	3.4.4 Feig's fast two-dimensional inverse DCT


	4 Fast Image Scaling in the Context of JPEG Decoding
	4.1 Image Scaling in the Spatial Domain
	4.2 Image Scaling in the IDCT Process
	4.2.1 Image scaling in the IDCT process to half of the original size
	4.2.2 Image scaling in the IDCT process to a fourth of the original size
	4.2.3 Image scaling in the IDCT process to an eighth of the original size


	5 The JPEGLib
	5.1 Goals, Motivation and History
	5.2 Capabilities of the JPEGLib
	5.3 The JPEGLib package content
	5.4 Adapting the JPEGLib to different platforms and compilers
	5.4.1 Determining the correct jconfig.h file and the correct makefile
	5.4.2 Choosing the right memory manager

	5.5 Usage and Architectural Issues
	5.5.1 Typical code sequences for encoding
	5.5.2 Typical code sequences for decoding
	5.5.3 The encoder and decoder objects

	5.6 Summary

	6 JPEG Decoding on the Micronas SDA 6000 Controller
	6.1 Project descriptions
	6.2 Changes to the JPEGLib
	6.3 Changes for faster downscaling to a fourth
	6.4 Important compiler optimization settings
	6.5 The custom data source manager for M2
	6.6 Other implementations of custom functionality
	6.6.1 ``Hooking'' into Huffman decoding
	6.6.2 Using XRAM for the range-limit table
	6.6.3 Modifying the color conversion and upsampling subobjects
	6.6.4 Modifying the dithering subobjects

	6.7 Customizing the behaviour of the Software
	6.8 Results
	6.8.1 Memory limitations and high-resolution JPEG files
	6.8.2 4-4-4 mode versus 5-6-5 mode
	6.8.3 JPEG Performance
	6.8.4 Image scaling Performance
	6.8.5 Debugging versus ``Free-Run'' Performance


	7 Summary and Future Outlook
	Index
	Bibliography
	Declaration

